
Dipartimento di
Informatica, Bioingegneria,
Robotica e Ingegneria dei Sistemi

An Unexpected Journey:
Towards Runtime Veri�cation of
Multiagent Systems and Beyond

Angelo Ferrando

Theses Series DIBRIS-TH-2019-2

Università di Genova

Dipartimento di Informatica, Bioingegneria,
Robotica ed Ingegneria dei Sistemi

Ph.D. Thesis in
Computer Science and Systems Engineering

Computer Science Curriculum

An Unexpected Journey:
Towards Runtime Veri�cation of
Multiagent Systems and Beyond

by

Angelo Ferrando

April, 2019

Ph.D. Thesis in Computer Science and Systems Engineering (S.S.D. INF/01)
Dipartimento di Informatica, Bioingegneria,
Robotica ed Ingegneria dei Sistemi
Università di Genova

Candidate
Angelo Ferrando
angelo.ferrando@dibris.unige.it

Title
An Unexpected Journey:
Towards Runtime Veri�cation of Multiagent Systems and Beyond

Advisors
Davide Ancona
DIBRIS, Università di Genova
davide.ancona@unige.it

Viviana Mascardi
DIBRIS, Università di Genova
viviana.mascardi@unige.it

External Reviewers
Rafael H. Bordini
Ponti�cia Universidade Católica do Rio Grande do Sul
r.bordini@pucrs.br

Frank De Boer
Universiteit Leiden
f.s.de.boer@liacs.leidenuniv.nl

Louise A. Dennis
University of Liverpool
l.a.dennis@liverpool.ac.uk

Location
DIBRIS, Univ. di Genova
Via Opera Pia, 13
I-16145 Genova, Italy

Submi�ed On
April 2019

mailto:angelo.ferrando@dibris.unige.it
mailto:davide.ancona@unige.it
mailto:viviana.mascardi@unige.it
mailto:r.bordini@pucrs.br
mailto:f.s.de.boer@liacs.leidenuniv.nl
mailto:l.a.dennis@liverpool.ac.uk

Dedicated to my family
...all right, all right, also to Martina!

“I’m going on an adventure!”
- J.R.R. Tolkien, The Hobbit

Abstract

The Trace Expression formalism derives from works started in 2012 and is
mainly used to specify and verify interaction protocols at runtime, but other
applications have been devised. More speci�cally, this thesis describes how
to extend and apply such formalism in the engineering process of distributed
arti�cial intelligence systems (such as Multiagent systems).
This thesis extends the state of the art through four di�erent contributions:

1. Theoretical: the thesis extends the original formalism in order to rep-
resent also parametric and probabilistic speci�cations (parametric trace
expressions and probabilistic trace expressions respectively).

2. Algorithmic: the thesis proposes algorithms for verifying trace expres-
sions at runtime in a decentralized way. The algorithms have been
designed to be as general as possible, but their implementation and
experimentation address scenarios where the modelled and observed
events are communicative events (interactions) inside a multiagent sys-
tem.

3. Application: the thesis analyzes the relations between runtime and static
veri�cation (e.g. model checking) proposing hybrid integrations in both
directions. First of all, the thesis proposes a trace expression model
checking approach where it shows how to statically verify LTL property
on a trace expression speci�cation. After that, the thesis presents a
novel approach for supporting static veri�cation through the addition
of monitors at runtime (post-process).

4. Implementation: the thesis presents RIVERtools, a tool supporting the
writing, the syntactic analysis and the decentralization of trace expres-
sions.

ii

Publications

Articles

Ancona, Davide, Angelo Ferrando, and Viviana Mascardi (2018b). “Improv-
ing �exibility and dependability of remote patient monitoring with agent-
oriented approaches”. In: Int. J. Agent-Oriented Software Engineering 6, Nos.
3/4.

Ancona, Davide, Daniela Briola, Angelo Ferrando, and Viviana Mascardi
(2015b). “Runtime veri�cation of fail-uncontrolled and ambient intelligence
systems: A uniform approach”. In: Intelligenza Arti�ciale 9.2, pp. 131–148. doi:
10.3233/IA-150084. url: https://doi.org/10.3233/IA-150084.

Fatto, Vincenzo Del, Gabriella Dodero, Armin Bernhard, Angelo Ferrando,
Davide Ancona, Viviana Mascardi, Robert Laurini, and Giuseppe Roccasalva
(2017). “Hackmytown: an Educational Experience on Smart Cities”. In: IxD&A
32, pp. 153–164. url: http : / / www . mifav . uniroma2 . it / inevent /
events/idea2010/index.php?s=10&a=10&link=ToC_32_P&link=32_

9_abstract.
Ferrando, Angelo (2019). “The early bird catches the worm: First verify, then

monitor!” In: Science of Computer Programming 172, pp. 160 –179. issn:
0167-6423. doi: https : / / doi . org / 10 . 1016 / j . scico . 2018 . 11 .
008. url: http://www.sciencedirect.com/science/article/pii/
S0167642318304349.

Conference Proceedings

Aielli, Federica, Davide Ancona, Pasquale Caianiello, Stefania Costantini, Gio-
vanni De Gasperis, Antinisca Di Marco, Angelo Ferrando, and Viviana
Mascardi (2016). “FRIENDLY & KIND with your Health: Human-Friendly
Knowledge-INtensive Dynamic Systems for the e-Health Domain”. In: High-
lights of Practical Applications of Scalable Multi-Agent Systems. The PAAMS
Collection - International Workshops of PAAMS 2016, Sevilla, Spain, June 1-3,
2016. Proceedings. Ed. by Javier Bajo, María José Escalona, Sylvain Giroux,
Patrycja Ho�a-Dabrowska, Vicente Julián, Paulo Novais, Nayat Sánchez Pi,
Rainer Unland, and Ricardo Azambuja Silveira. Vol. 616. Communications in
Computer and Information Science. Springer, pp. 15–26. doi: 10.1007/978-
3-319-39387-2_2. url: https://doi.org/10.1007/978-3-319-
39387-2_2.

Ancona, Davide, Angelo Ferrando, and Viviana Mascardi (2016). “Comparing
Trace Expressions and Linear Temporal Logic for Runtime Veri�cation”. In:
Theory and Practice of Formal Methods - Essays Dedicated to Frank de Boer
on the Occasion of His 60th Birthday. Ed. by Erika Ábrahám, Marcello M.

iii

https://doi.org/10.3233/IA-150084
https://doi.org/10.3233/IA-150084
http://www.mifav.uniroma2.it/inevent/events/idea2010/index.php?s=10&a=10&link=ToC_32_P&link=32_9_abstract
http://www.mifav.uniroma2.it/inevent/events/idea2010/index.php?s=10&a=10&link=ToC_32_P&link=32_9_abstract
http://www.mifav.uniroma2.it/inevent/events/idea2010/index.php?s=10&a=10&link=ToC_32_P&link=32_9_abstract
https://doi.org/https://doi.org/10.1016/j.scico.2018.11.008
https://doi.org/https://doi.org/10.1016/j.scico.2018.11.008
http://www.sciencedirect.com/science/article/pii/S0167642318304349
http://www.sciencedirect.com/science/article/pii/S0167642318304349
https://doi.org/10.1007/978-3-319-39387-2_2
https://doi.org/10.1007/978-3-319-39387-2_2
https://doi.org/10.1007/978-3-319-39387-2_2
https://doi.org/10.1007/978-3-319-39387-2_2

Publications

Bonsangue, and Einar Broch Johnsen. Vol. 9660. Lecture Notes in Computer
Science. Springer, pp. 47–64. doi: 10.1007/978-3-319-30734-3_6. url:
https://doi.org/10.1007/978-3-319-30734-3_6.

Ancona, Davide, Angelo Ferrando, and Viviana Mascardi (2017). “Parametric
Runtime Veri�cation of Multiagent Systems”. In: Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017,
São Paulo, Brazil, May 8-12, 2017. Ed. by Kate Larson, Michael Winiko�,
Sanmay Das, and Edmund H. Durfee. ACM, pp. 1457–1459. url: http:
//dl.acm.org/citation.cfm?id=3091328.

– (2018a). “Agents Interoperability via Conformance Modulo Mapping”. In:
Proceedings of the 19th Workshop "From Objects to Agents", Palermo, Italy, June
28-29, 2018. Ed. by Massimo Cossentino, Luca Sabatucci, and Valeria Seidita.
Vol. 2215. CEUR Workshop Proceedings. CEUR-WS.org, pp. 109–115. url:
http://ceur-ws.org/Vol-2215/paper_18.pdf.

Ancona, Davide, Daniela Briola, Angelo Ferrando, and Viviana Mascardi
(2015a). “Global Protocols as First Class Entities for Self-Adaptive Agents”.
In: Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2015, Istanbul, Turkey, May 4-8, 2015. Ed. by
Gerhard Weiss, Pinar Yolum, Rafael H. Bordini, and Edith Elkind. ACM,
pp. 1019–1029. url: http://dl.acm.org/citation.cfm?id=2773282.

– (2016). “MAS-DRiVe: a Practical Approach to Decentralized Runtime Veri�c-
ation of Agent Interaction Protocols”. In: Proceedings of the 17th Workshop
"From Objects to Agents" co-located with 18th European Agent Systems Summer
School (EASSS 2016), Catania, Italy, July 29-30, 2016. Ed. by Corrado Santoro,
Fabrizio Messina, and Massimiliano De Benedetti. Vol. 1664. CEUR Workshop
Proceedings. CEUR-WS.org, pp. 35–43. url: http://ceur-ws.org/Vol-
1664/w7.pdf.

Ancona, Davide, Angelo Ferrando, Luca Franceschini, and Viviana Mascardi
(2017). “Parametric Trace Expressions for Runtime Veri�cation of Java-Like
Programs”. In: Proceedings of the 19th Workshop on Formal Techniques for
Java-like Programs, Barcelona , Spain, June 20, 2017. ACM, 10:1–10:6. doi:
10.1145/3103111.3104037. url: http://doi.acm.org/10.1145/
3103111.3104037.

– (2018a). “Coping with Bad Agent Interaction Protocols When Monitoring
Partially Observable Multiagent Systems”. In: Advances in Practical Applic-
ations of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collec-
tion - 16th International Conference, PAAMS 2018, Toledo, Spain, June 20-22,
2018, Proceedings. Ed. by Yves Demazeau, Bo An, Javier Bajo, and Anto-
nio Fernández-Caballero. Vol. 10978. Lecture Notes in Computer Science.
Springer, pp. 59–71. doi: 10.1007/978-3-319-94580-4_5. url: https:
//doi.org/10.1007/978-3-319-94580-4_5.

– (2018b). “Managing Bad AIPs with RIVERtools”. In: Advances in Practical
Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS
Collection - 16th International Conference, PAAMS 2018, Toledo, Spain, June
20-22, 2018, Proceedings. Ed. by Yves Demazeau, Bo An, Javier Bajo, and

iv

https://doi.org/10.1007/978-3-319-30734-3_6
https://doi.org/10.1007/978-3-319-30734-3_6
http://dl.acm.org/citation.cfm?id=3091328
http://dl.acm.org/citation.cfm?id=3091328
http://ceur-ws.org/Vol-2215/paper_18.pdf
http://dl.acm.org/citation.cfm?id=2773282
http://ceur-ws.org/Vol-1664/w7.pdf
http://ceur-ws.org/Vol-1664/w7.pdf
https://doi.org/10.1145/3103111.3104037
http://doi.acm.org/10.1145/3103111.3104037
http://doi.acm.org/10.1145/3103111.3104037
https://doi.org/10.1007/978-3-319-94580-4_5
https://doi.org/10.1007/978-3-319-94580-4_5
https://doi.org/10.1007/978-3-319-94580-4_5

Publications

Antonio Fernández-Caballero. Vol. 10978. Lecture Notes in Computer Science.
Springer, pp. 296–300. doi: 10.1007/978-3-319-94580-4_24. url:
https://doi.org/10.1007/978-3-319-94580-4_24.

Beux, Silvio et al. (2015). “Computational thinking for beginners: A successful
experience using Prolog”. In: Proceedings of the 30th Italian Conference on
Computational Logic, Genova, Italy, July 1-3, 2015. Ed. by Davide Ancona,
Marco Maratea, and Viviana Mascardi. Vol. 1459. CEUR Workshop Pro-
ceedings. CEUR-WS.org, pp. 31–45. url: http://ceur- ws.org/Vol-
1459/paper10.pdf.

Ferrando, Angelo (2015). “Parametric protocol-driven agents and their integ-
ration in JADE”. In: Proceedings of the 30th Italian Conference on Computa-
tional Logic, Genova, Italy, July 1-3, 2015. Ed. by Davide Ancona, Marco Mar-
atea, and Viviana Mascardi. Vol. 1459. CEUR Workshop Proceedings. CEUR-
WS.org, pp. 72–84. url: http://ceur-ws.org/Vol-1459/paper26.pdf.

– (2016). “Automatic Partitions Extraction to Distribute the Runtime Veri�ca-
tion of a Global Speci�cation”. In: Proceedings of the Doctoral Consortium of
AI*IA 2016 co-located with the 15th International Conference of the Italian As-
sociation for Arti�cial Intelligence (AI*IA 2016), Genova, Italy, November 29,
2016. Ed. by Viviana Mascardi and Ilaria Torre. Vol. 1769. CEUR Workshop
Proceedings. CEUR-WS.org, pp. 40–45. url: http://ceur-ws.org/Vol-
1769/paper07.pdf.

Ferrando, Angelo, Davide Ancona, and Viviana Mascardi (2016). “Monitoring
Patients with Hypoglycemia Using Self-adaptive Protocol-Driven Agents: A
Case Study”. In: Engineering Multi-Agent Systems - 4th International Work-
shop, EMAS 2016, Singapore, Singapore, May 9-10, 2016, Revised, Selected, and
Invited Papers. Ed. by Matteo Baldoni, Jörg P. Müller, Ingrid Nunes, and
Rym Zalila-Wenkstern. Vol. 10093. Lecture Notes in Computer Science.
Springer, pp. 39–58. doi: 10.1007/978-3-319-50983-9_3. url: https:
//doi.org/10.1007/978-3-319-50983-9_3.

– (2017). “Decentralizing MAS Monitoring with DecAMon”. In: Proceedings of
the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS
2017, São Paulo, Brazil, May 8-12, 2017. Ed. by Kate Larson, Michael Winiko�,
Sanmay Das, and Edmund H. Durfee. ACM, pp. 239–248. url: http://dl.
acm.org/citation.cfm?id=3091164.

Ferrando, Angelo, Silvio Beux, Viviana Mascardi, and Paolo Rosso (2016). “Iden-
ti�cation of Disease Symptoms in Multilingual Sentences: An Ontology-
Driven Approach”. In: Proceedings of the First Workshop on Modeling, Learn-
ing and Mining for Cross/Multilinguality (MultiLingMine 2016) co-located
with the 38th European Conference on Information Retrieval (ECIR 2016),
Padova, Italy, March 20, 2016. Ed. by Dino Ienco, Mathieu Roche, Salvatore
Romeo, Paolo Rosso, and Andrea Tagarelli. Vol. 1589. CEUR Workshop Pro-
ceedings. CEUR-WS.org, pp. 6–15. url: http://ceur- ws.org/Vol-
1589/MultiLingMine1.pdf.

Ferrando, Angelo, Louise A. Dennis, Davide Ancona, Michael Fisher, and Vivi-
ana Mascardi (2018a). “Recognising Assumption Violations in Autonomous

v

https://doi.org/10.1007/978-3-319-94580-4_24
https://doi.org/10.1007/978-3-319-94580-4_24
http://ceur-ws.org/Vol-1459/paper10.pdf
http://ceur-ws.org/Vol-1459/paper10.pdf
http://ceur-ws.org/Vol-1459/paper26.pdf
http://ceur-ws.org/Vol-1769/paper07.pdf
http://ceur-ws.org/Vol-1769/paper07.pdf
https://doi.org/10.1007/978-3-319-50983-9_3
https://doi.org/10.1007/978-3-319-50983-9_3
https://doi.org/10.1007/978-3-319-50983-9_3
http://dl.acm.org/citation.cfm?id=3091164
http://dl.acm.org/citation.cfm?id=3091164
http://ceur-ws.org/Vol-1589/MultiLingMine1.pdf
http://ceur-ws.org/Vol-1589/MultiLingMine1.pdf

Publications

Systems Veri�cation”. In: Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm,
Sweden, July 10-15, 2018. Ed. by Elisabeth André, Sven Koenig, Mehdi Dast-
ani, and Gita Sukthankar. International Foundation for Autonomous Agents
and Multiagent Systems Richland, SC, USA / ACM, pp. 1933–1935. url:
http://dl.acm.org/citation.cfm?id=3238028.

Ferrando, Angelo, Louise A. Dennis, Davide Ancona, Michael Fisher, and Vivi-
ana Mascardi (2018b). “Verifying and Validating Autonomous Systems: To-
wards an Integrated Approach”. In: Runtime Veri�cation - 18th International
Conference, RV 2018, Limassol, Cyprus, November 10-13, 2018, Proceedings. Ed.
by Christian Colombo and Martin Leucker. Vol. 11237. Lecture Notes in Com-
puter Science. Springer, pp. 263–281. doi: 10.1007/978-3-030-03769-
7_15. url: https://doi.org/10.1007/978-3-030-03769-7_15.

vi

http://dl.acm.org/citation.cfm?id=3238028
https://doi.org/10.1007/978-3-030-03769-7_15
https://doi.org/10.1007/978-3-030-03769-7_15
https://doi.org/10.1007/978-3-030-03769-7_15

Acknowledgements

I want to thank prof. Michael Fisher and prof. Louise A. Dennis for letting me
visit their laboratory at the University of Liverpool (UK).
I want to thank prof. Amit K. Chopra for letting me visit his laboratory at the
University of Lancaster (UK).
I also want to thank prof. Michael Winiko� and prof. Stephen Crane�eld for
letting me visit their laboratory at the University of Otago (New Zealand).

Now for all the others, in Italian!

In questo mattone di inglese, almeno i ringraziamenti lasciamoli in italiano
no? Vediamo un po’ chi purtroppo si è meritato di essere ringraziato...

Ringrazio i miei relatori Viviana e Davide per essere stati presenti in questi 4
anni (laurea magistrale e Ph.D.) e per avermi sempre lasciato libertà di scelta
sugli argomenti su cui fare ricerca.
Ringrazio la mia famiglia per avermi supportato sia nel periodo della laurea
triennale e magistrale, sia durante il dottorato. Una famiglia normale avrebbe
cercato di non farmi iniziare un nuovo percorso universitario dopo la laurea
magistrale, grazie per non esserlo stata.
Ringrazio Martina per avermi sopportato1 per tutto questo tempo, ci siamo
conosciuti in università quando frequentavo il primo anno di Informatica a
Genova e da allora siamo sempre stati insieme. Non avrei mai potuto ottenere
gli stessi risultati senza di lei e, come dissi nei ringraziamenti della tesi ma-
gistrale, lei resterà sempre la mia vittoria più grande. Un dottorato è niente a
confronto!
Ringrazio tutti i miei amici più cari: Paolo (aka Monta), Davide (aka Pappy),
Andrea (aka Brogne), Michele (aka Miky), Ilaria (aka Ila bionda), Ilaria (aka
Pingu), Eleonora e Alice. Gli anni sono passati ma voi no2 e sono grato di ogni
momento passato insieme.
Ringrazio tutti gli altri dottorandi dell’università di Genova, in particolare
Federico, Laura e Tommaso. Finalmente siamo arrivati alla �ne di questa lunga
maratona iniziata insieme al primo anno e sono onorato di aver intrapreso
questo cammino con voi.
Ringrazio Lorenzo (aka prof. Repetto) per essere sempre stato la mia fonte di
ispirazione. Se non fosse stato per lui non avrei nemmeno iniziato l’università.

1Con la “o” esatto! Non è un errore di battitura.
2Solo invecchiati.. male per di più.. io invece sono invecchiato benissimo!

vii

Contents

I Introduction 1

1 Motivations and Aims of the Thesis 2

2 Structure and Contributions of the Thesis 6
2.1 Structure . 6
2.2 Contributions . 7

2.2.1 Propose an expressive formalism and its extensions to
support runtime veri�cation of complex systems . . . 8

2.2.2 Design and de�ne the algorithms for obtaining a de-
centralized runtime veri�cation approach of Agent
Interaction Protocols 8

2.2.3 Propose a hybrid approach combining runtime and
static veri�cation of multiagent systems 10

2.2.4 Present a tool developed for supporting runtime veri-
�cation guided by trace expressions and a case study . 10

2.3 How to read the Thesis . 11

II Background 14

3 Preliminaries 15
3.1 Multiagent Systems and Distributed Arti�cial Intelligence . . 16
3.2 Rational agents . 20
3.3 Jason . 20
3.4 JADE . 21

3.4.1 Architecture . 21
3.4.2 Creating agents . 22

3.5 Techniques for checking the system’s behaviour 27
3.5.1 Model checking . 28
3.5.2 Runtime veri�cation 29
3.5.3 Runtime veri�cation versus Model checking 30

3.6 LTL . 31
3.6.1 LTL syntax and semantics 32
3.6.2 Non deterministic Büchi Automaton 32
3.6.3 LTL Model Checking 33
3.6.4 Automata-Based Model Checking 33
3.6.5 LTL3 . 33

3.7 Model Checking Agent Programming Languages 35
3.8 Hidden Markov Models . 36

viii

Contents

3.9 Global Types . 37
3.9.1 Syntax . 38
3.9.2 Semantics . 38

4 Trace expressions 40
4.1 Introduction . 41
4.2 The trace expression formalism 42

4.2.1 Events . 42
4.2.2 Event types . 42
4.2.3 Trace expressions . 43
4.2.4 Deterministic trace expressions 47
4.2.5 Expansive trace expressions 48
4.2.6 Derived operators . 48

4.3 Examples of speci�cations with trace expressions 49
4.3.1 Ping Pong Protocol . 49
4.3.2 Alternating Bit Protocol 51
4.3.3 Non context free languages 52

4.4 Trace expressions monitoring 53
4.5 Comparison with LTL . 55

4.5.1 Comparing trace expressions and LTL 55

5 State of the art 58
5.1 Engineering Multiagent Systems 59
5.2 Blindingly Simple Protocol Language 61
5.3 Commitment-based Interaction 62
5.4 New Hierarchical Agent Protocol Notation 64
5.5 Self-adaptive Systems Engineering 64

III Formalism extensions 67

6 Parametric Trace Expressions 68
6.1 Introduction . 69

6.1.1 Illustrative example . 69
6.2 Formalization . 70
6.3 Illustrative example revisited 72
6.4 Case study . 74

6.4.1 Informal speci�cation of the protocol 74
6.4.2 Formal speci�cation of the protocol 74

6.5 Discussion . 78

7 Probabilistic Trace Expressions 79
7.1 Introduction . 80
7.2 Runtime Veri�cation with State Estimation 82
7.3 Probabilistic Trace Expressions 82

7.3.1 Non Determinism in State Transitions 86

ix

Contents

7.3.2 From Trace Expressions to Probabilistic Trace Expres-
sions . 88

7.4 From Hidden Markov Models to Probabilistic Trace Expressions 89
7.4.1 The HMM2PTE Algorithm 89
7.4.2 Forward Algorithm for Probabilistic Trace Expressions 89
7.4.3 Satisfying LTL Properties when Gaps Are Observed . 93

7.5 Implementation and Experiments 94
7.6 Discussion . 95

IV Engineering Agent Interaction Protocols 96

8 Issues with Agent Interaction Protocols 97
8.1 Introduction . 98
8.2 Projection of an Agent Interaction Protocol 99
8.3 State of the art . 100
8.4 The Good, the Bad and the Ugly 101
8.5 Partial Observability: how the Good Becomes Bad 104

8.5.1 Observability-driven transformation of trace expressions 106
8.5.2 Implementation and Experiments 107

8.6 Revisiting Good and Bad notions 108
8.7 Discussion . 109

9 DecentralizedRuntimeVeri�cation ofAgent InteractionPro-
tocols 110
9.1 Introduction . 111
9.2 Motivations . 111
9.3 DecAMon: a Gentle Introduction 114

9.3.1 High-level Description and Examples 115
9.4 Design . 118
9.5 Implementation and Experiments 122
9.6 Discussion . 125

10 DecentralizedRuntimeVeri�cation ofAgent InteractionPro-
tocols with Gaps 127
10.1 Introduction . 128
10.2 Exploiting DecAMon for PTEs 129
10.3 Handling Gaps in Decentralized RV 130

10.3.1 Synchronizing Decentralized Gaps Management . . . 132
10.4 Example . 133
10.5 Implementation and Experiments 136
10.6 Discussion . 141

11 Conformance checking 142
11.1 Introduction . 143
11.2 State of the art . 146
11.3 LAIP Conformance Modulo Mapping 147

x

Contents

11.4 Conformance algorithm: pseudo-code 151
11.5 Implementation and Experiments 154
11.6 Discussion . 157

V Combining static and runtime veri�cation 158

12 Trace expressions model checking 159
12.1 Introduction . 160
12.2 State of the art . 161
12.3 Motivations . 163
12.4 Model Checking Trace expressions 164

12.4.1 1st step: Rewriting . 165
12.4.2 2nd step: Translation 171
12.4.3 3rd step: Product . 173

12.5 Implementation and Experiments 174
12.6 Discussion . 177

13 Recognising Assumption Violations in Autonomous Systems
Veri�cation 178
13.1 Introduction . 179
13.2 State of the art . 180
13.3 Running Example . 182
13.4 Recognising Assumption Violations 184

13.4.1 AJPF Static Formal Veri�cation 185
13.4.2 Event Types for AJPF Environments 185
13.4.3 Abstract Model Generation 188
13.4.4 MCAPL Runtime Veri�cation 190

13.5 Discussion . 190

VI Implementation and Case Study 194

14 Development of a framework supporting trace expressions RV195
14.1 Introduction . 196
14.2 Trace expression RV using SWI-Prolog 197
14.3 RIVERtools . 198

14.3.1 An example using RIVERtools 204
14.3.2 Decentralizing the Example with RIVERtools 207
14.3.3 Screenshots . 212

14.4 Tutorial: How to use RIVERtools 214
14.4.1 How to install SWI-Prolog 214
14.4.2 How to install RIVERtools Eclipse plugin 215
14.4.3 How to use RIVERtools plugin (through an example) . 215
14.4.4 How to verify a MAS implemented in JADE 216

14.5 Discussion . 217

xi

Contents

15 Case Study 219
15.1 Introduction . 220

15.1.1 A Jason Framework Supporting Agents Driven by Para-
metric Trace Expressions 221

15.1.2 Modeling Clinical Guidelines 222
15.1.3 Modeling Management of Hypoglycemia in the New-

borns . 224
15.2 Experiments . 228

15.2.1 A priori veri�cation (attains fault tolerance and removal) 228
15.2.2 Self-adaptation (attains �exibility and fault tolerance

and removal) . 228
15.2.3 Performances . 230

15.3 Discussion . 232

VII Discussion 233

16 Comparison 234
16.1 Trace Expressions VS State of the art 234

16.1.1 Comparison . 235

17 Conclusions and Future Work 237
17.1 Conclusions . 238
17.2 Expected Future Directions . 239
17.3 Unexpected Future Directions 241

A Medical Guidelines 245

xii

List of Figures

2.1 Dependency graph of the main chapters. For instance, to un-
derstand Chapter 10 you have to read chapters 8 and 7 �rst. . . 13

3.1 Model checking procedure (Gluch et al., 2019) 28
3.2 FSM of the monitor for pUq, with AP = {p,q} 34
3.3 Steps required to generate an FSM from an LTL formula φ . . 35
3.4 AJPF architecture (Bordini et al., 2008) 36

4.1 Operational semantics of trace expressions 45
4.2 Empty trace containment . 45
4.3 An abstract view of how to build a monitor. 54

6.1 Transition system for parametric trace expressions 71

7.1 An example of HMM (from (Stoller et al., 2011)). 82
7.2 Transition system for probabilistic trace expressions states. . . 84
7.3 Rules for nondeterminism and transitive closure. 87

10.1 Centralized algorithm: changing number of agents. 138
10.2 Decentralized algorithm: changing number of agents. 138
10.3 Centralized algorithm: changing number of operators. 139
10.4 Decentralized algorithm: changing number of operators. . . . 139
10.5 Centralized algorithm: changing number of shu�ed sub-PTEs. 140
10.6 Decentralized algorithm: changing number of shu�ed sub-PTEs. 140

11.1 (a) and (b) MAS presented in the example; (c) Buyer substitutes
Client through the interface i driven by MA = {Buyer 7→
Client, Seller 7→ BookShop}, MM = {res? 7→ book?, res 7→
book,money 7→ ack, no 7→ no_avbl}); (d) Seller substitutes
BookShop with an interface driven by the same maps. 156

12.1 Büchi Automaton Bτ ′ . 172

13.1 General view. 186
13.2 Trace expression template for generating abstract environments. 187
13.3 Trace Expressions for Constrs where Bj,i , NBj, i. 188
13.4 Trace expression for a Cruise Control Agent. 190
13.5 Trace Expression for the Constraints on a Car where the driver

only accelerates when it is safe to do so, and never uses both
brake and acceleration pedal at the same time. 191

14.1 RIVERtools general representation (left) and its exploitation
in three di�erent scenarios: JADE, Jason and Node.js (right). . 199

xiii

List of Figures

14.2 RIVERtools exploited in JADE. 202
14.3 Abstract view of how JPL is used inside the JADE-Connector. 203
14.4 The book-shop scenario presented in Section 14.3.1. 212
14.5 Error: Partition not valid . 213
14.6 Error: After having removed the role “frank”, we have an ex-

istence error. 213
14.7 Error: After having removed the event type buy, we have an

existence error. 214

15.1 Agents patient1 and patient2 sending the hours of life to agent
doctor1. 229

15.2 Agent doctor1 sending the threshold to patient1. 229
15.3 Agent patient1 perceiving a low level of glucose. 230
15.4 Agent doctor1 asking for a protocol switch to patient1. 230
15.5 Agent patient1 displaying the need of an intravenous injection. 230
15.6 Agent patient1 asking doctor1 to intervene. 231

xiv

List of Tables

9.1 Experimental results: using DecAMon to extract minimal mon-
itoring safe partitions. 124

9.2 Experimental results: �ltering minimal monitoring safe parti-
tions using di�erent post-processing functions. 125

10.1 Average time of the centralized and decentralized algorithms;
“sh. PTE” stands for “shu�ed sub-PTE”. 137

15.1 Experiments . 231

16.1 Comparison . 236

xv

Listings

14.1 Book-shop trace expression written inside RIVERtools. 205
14.2 BookPurchase.java automatically generated by RIVERtools. . . 206
14.3 Manual decentralization of book-shop trace expression in RIVER-

tools. 207
14.4 BookPurchase.java automatically generated by RIVERtools

where we decentralize the RV on a �xed partition. 208
14.5 Automatic decentralization of book-shop trace expression in

RIVERtools. 209
14.6 BookPurchase.java automatically generated by RIVERtools

where we decentralize the RV on a not speci�ed minimal mon-
itoring safe partition. 211

xvi

Open source code

• https://github.com/AngeloFerrando/TExpSWIPrologConnector

Java library for supporting the integration (“bridge”) between trace ex-
pressions implemented using SWI-Prolog and Java. This library works as a
connector for de�ning and querying trace expressions directly from Java,
and it is used as the main pillar for building other system integrations.

• https://github.com/AngeloFerrando/TExpRVJade

Java library for implementing Runtime Veri�cation of multi-agent systems
implemented in JADE using trace expressions. More speci�cally, trace
expressions are used to de�ne Agent Interaction Protocols that can be
checked at runtime, both in a centralized and a decentralized way (based
on the achievements of Chapter 9).

• https://github.com/AngeloFerrando/trace_expression_plugin_

eclipse

The IDE which has been developed for supporting the use of the trace ex-
pressions formalism in a more developer-friendly way (Tutorial available
in Section 14.4).

• http://www.ParametricTraceExpr.altervista.org

The SWI-Prolog and JADE code developed for using parametric trace
expressions (this code is used inside the TExpSWIPrologConnector and
TExpRVJade projects). The theory behind this implementation is presen-
ted in Chapter 6.

• http://trace2buchi.altervista.org

The code implementing the translation from a trace expression to the
corresponding Büchi Automaton. The theory behind this implementation
is presented in Chapter 12.

• http://mcapl.sourceforge.net

Full source code for the integration of trace expressions inside the MCAPL
framework. The theory behind this implementation is presented in Chapter
13.

xvii

https://github.com/AngeloFerrando/TExpSWIPrologConnector
https://github.com/AngeloFerrando/TExpRVJade
https://github.com/AngeloFerrando/trace_expression_plugin_eclipse
https://github.com/AngeloFerrando/trace_expression_plugin_eclipse
http://www.ParametricTraceExpr. altervista.org
http://trace2buchi.altervista. org
http://mcapl.sourceforge.net

Acronyms

ACLs Agent Communication Languages

AIL Agent Infrastructure Layer

AIP Agent Interaction Protocol

AJPF Agent Java PathFinder

AOP Agent-Oriented Programming

API Application Programming Interface

BDI Beliefs Desires Intentions

BSPL Blindingly Simple Protocol Language

CM Commitment Machines

DRV Decentralized Runtime Veri�cation

EASS Engineering Autonomous Space Software

HAPN Hierarchical Agent Protocol Notation

HMM Hiden Markov Model

IDE Integrated Development Environment

IoT Internet of Things

JPF Java PathFinder

LTL Linear Temporal Logic

MAS Multiagent System

MCAPL Model Checking Agent Programming Languages

RPM Remote Patient Monitoring

RV Runtime Veri�cation

SOC Service-Oriented Computing

xviii

Part I

Introduction

This part is focused on presenting the contents of the thesis. We will �rst
discuss the motivations of this work and we will then introduce the aims of
the thesis and its structure. Finally, we will provide a section on how to read
this work with a corresponding dependency graph for the various chapters.

1

1 Motivations and Aims of the Thesis

Nowadays, multiagent systems (MAS) are a very well known and established
research �eld. Though MAS may seem young, huge advances have been made
since their introduction in (Wooldridge, 1992; Wooldridge and Jennings, 1995):
MAS have been studied, extended, and implemented from both a theoretical
and a practical viewpoint. Thanks to a large community and to the interest
— most of the time — of the industry, MAS have become a good base for the
design and development of heterogeneous and distributed systems.

Despite that, the di�usion of MAS applications in the real world has not
reached its full potential yet. Although dating back to ten years ago, the work
by Pechoucek et al. (Pechoucek and Marík, 2008) explains that the reasons
can be found in

1. limited awareness about the potential of agent technologies;

2. limited publicity of successful industrial projects carried out with agent
technologies;

3. misunderstandings about the e�ectiveness of agent-based solutions;

4. risks of adopting a technology that has not been already proven in large
scale industrial applications;

5. lack of mature enough design and development tools for industrial
deployment.

All the observations previously reported are important per se, and should
be tackled individually. The main work presented in this thesis tackles the 4th
and 5th issues.

One of the risks of adopting MAS technologies for the development of large
real systems is related to their reliability. MAS are essentially distributed sys-
tems composed of decentralized autonomous entities called agents1. Each
agent is able to reason about its goals in order to achieve them, usually col-
laborating in a community with other agents, exploiting social activities. The
importance given to the features of the agents may change with respect to
the scenario they have been exploited in. Features such as autonomy are com-
monly recognized to be important for an agent. However, when environments
are highly dynamic as in modern embedded systems (Macías-Escrivá et al.,
2013), where the agents have to make decisions on adaptivity at runtime with
respect to changing requirements, self-adaptivity is as important as autonomy;
on the other hand, when the environment where agents operate is almost
static, self-adaptivity can be an undesired feature. As an example, we can think

1Further details can be found in Chapter 3.

2

1 Motivations and Aims of the Thesis

about developing a MAS supporting a �ight control system. In such scenario,
we do not want agents able to adapt, we want agents that can be trusted and,
above all, with a predictable behaviour.

Taking care of the complexity of such kind of distributed systems is not
an easy task. The complexity easily raises design and implementation errors,
and this causes a major risk in adopting MAS technology in large scale in-
dustrial applications. One of the possible ways to tackle this kind of problem
is through veri�cation of MAS. Said veri�cation – showing that a system is
correct with respect to its stated requirements – is an increasingly important
issue, especially as agent systems are applied to safety-critical applications
such as autonomous spacecraft control (Havelund, Lowry, and Penix, 2001;
Muscettola et al., 1998). By verifying the behaviours of the agents, we increase
the level of trust in them. As we are going to analyze more in detail in the
thesis, we will discuss about di�erent approaches to the veri�cation of MAS. In
this thesis, we will focus more on the Runtime Veri�cation (RV) approach, but
we will also consider its possible combination with the more standard Static
Veri�cation approach (Fisher and Wooldridge, 1997) such as model checking
(Bordini et al., 2006; Clarke, Grumberg, and Peled, 1999; Merz, 2001). Being
able to verify the behaviour of the agents inside a MAS increases the reliability
of the system implementation. If we could check the MAS in respect of a
set of properties of our interest, we would also be able to use it in scenarios
where reliability is a key feature. For this reason, we focused our attention on
studying and developing new approaches to achieve the RV of MAS during
the Ph.D. program.

Runtime Veri�cation (Delgado, Gates, and Roach, 2004; Leucker and Schall-
hart, 2009) is a light-weight approach that allows us to verify if a software
system is consistent or not with a speci�c property. The name “Runtime” de-
rives from the time this approach is applied. In RV, we check a system while
it is running; thanks to this, we can state that RV is a light-weight approach
because it does not care about generating all possible system’s behaviours (as it
usually happens in model checking) but it simply analyzes the observed ones’2.
For this reason, RV is also commonly associated with the term “Monitoring”
because we are just interested in verifying what the system does (obtaining
a less invasive but non exhaustive approach). The formalisms that we can
use to represent these properties can vary, and each one has its advantages
and disadvantages. In Chapter 5 we present di�erent ones that can be used to
specify protocols and properties; in Chapter 16 we compare them to the one
we are going to present and use in this thesis. More speci�cally, we chose the
Trace Expression formalism, which is presented in Chapter 4, to specify prop-
erties. Trace expressions are a complex and compact formalism that has been
developed during the Ph.D. program. Despite showing how this formalism
can actually be used to achieve the RV of MAS, we will also present the exten-
sions that have been proposed during the Ph.D. program in Chapters 6 and 7

2In an ideal world, the monitor should never in�uence the system. In a nutshell, the presence
of the monitor does not change the system’s behaviour.

3

1 Motivations and Aims of the Thesis

in order to increase the range of its possible applications. RV reinforces the
reliability of the MAS introducing monitors in the implementations. Through
these monitors, we can analyze at runtime the behaviour of all the agents and
we can check if it is consistent with a speci�cation. For instance, as we will
see in Chapter 8, we can specify Agent Interaction Protocols (AIP) in order to
check the social activities of the agents. In this kind of situation, the monitors
must be able to observe the message exchanges among the agents checking
the compliance with the AIP at runtime. This is interesting when we consider
MAS where the social activities are one of the main aspects. Monitors can also
be used to check the internal states of the agents, but we will always focus
on a less invasive veri�cation approach in this work; as a matter of fact, an
entire part of the thesis is centred on the use of trace expressions to represent
AIPs. Outside the context of AIPs, scenarios where we have no access to the
implementations of the systems are common, and the possibility to analyze
them externally is an important and valuable feature.

In order to exhaustively achieve the RV of a software system, we have to
tackle it from both a theoretical and a practical point of view. Theoretical view,
because RV is a formal approach based on the concept of formal speci�cations
for representing the properties used to guide the monitors; thus, we need to
study, integrate and extend new formalisms to support the veri�cation process.
Practical view, because as the other veri�cation approaches, its aim is to verify
real systems in real scenarios; works on RV and Static Veri�cation are, in fact,
usually accompanied with their implementation and related experiments. This
aspect is well established in this thesis, an entire Chapter is indeed dedicated
to the implementation of a tool supporting our RV approach (Chapter 14).

A standard way to achieve the RV of a MAS is using a single centralized
monitor that is able to observe the behaviours of all the agents belonging to the
MAS. This approach is extremely monolithic and is generally suitable for more
centralized systems. If we consider a large MAS, composed by many di�erent
agents that are spread heterogeneously inside an environment, verifying the
behaviours of all of them using only one monitor becomes easily intractable
(typical bottleneck problem). For this reason, during the Ph.D. program, we
have been focusing on a more decentralized way to achieve the RV of MAS,
presented in Chapter 9. Intuitively, we are interested in decentralizing the
monitoring of speci�cations on multiple decentralized monitors. Instead of
generating a single centralized monitor to check the entire system behaviour,
we will show how we can achieve the same results producing di�erent decent-
ralized monitors. Not all the speci�cations expressed using trace expressions
can be decentralized in the same way and there are many issues to be tackled
in order to achieve this.

As we anticipated before, RV is not the only way to increase the reliability
of MAS. During the Ph.D. program, we also studied possible ways to combine
static veri�cation and runtime veri�cation, presented in Chapter 12 and Chapter
13. Studying new hybrid approaches is very important because static and
runtime veri�cations have di�erent advantages and disadvantages, as we will

4

1 Motivations and Aims of the Thesis

see, and their combination produces a more robust way to verify MAS. For
this and other reasons, we dedicated part of the Ph.D. program in studying
two di�erent hybrid approaches.

At the beginning of this chapter, we presented a list of possible issues con-
cerning the use of MAS for developing real life applications. Until now we
have considered the parts of the thesis focused on reducing the risks of adopt-
ing agent technology in real applications. The other relevant claim tackled
by the thesis concerns the development of tools supporting the design and
development of MAS, particularly the development of a tool supporting the RV
of MAS. From a software engineering viewpoint, proposing new techniques
and methods for achieving the RV of MAS is useless if they are not supported
by a suitable development toolkit. In the last year of the Ph.D. program we de-
veloped an Integrated Development Environment (IDE), presented in Chapter
14, that supports the de�nition of speci�cations and the automatic generation
of the corresponding monitors for achieving the RV of the target MAS.

The main objectives of this thesis can be summarized as follows:

• to present the theoretical foundations of the trace expression formalism
and its extensions (parametric and probabilistic);

• to show how to exploit the trace expression formalism for achieving the
Runtime Veri�cation of – and not limited only to – distributed arti�cial
intelligence systems (such as Multiagent Systems);

• to present the algorithms that have been designed and developed to
obtain a decentralized Runtime Veri�cation of Agent Interaction Pro-
tocols in the context of veri�cation of the social activities involved in
the Multiagent Systems (also in presence of uncertainty in the observed
events);

• to combine Runtime Veri�cation and Static Veri�cation in both directions
in order to obtain a more robust and reliable approach for the veri�cation
of the Multiagent Systems;

• to implement a software platform for supporting the use of the trace
expression formalism for the design and development of monitors for
verifying Multiagent Systems at runtime.

The research methodology followed during the three years of the Ph.D.
program consisted in facing every research issue both from a theoretical and
practical viewpoint.

5

2 Structure and Contributions of the Thesis

2.1 Structure

part I - introduction. This part contains introductory chapters ex-
plaining the motivations and aims of this thesis (Chapter 1). The structure of
the thesis is presented here in this chapter.

part II - background. We introduce all the preliminary concepts neces-
sary to understand the contents of the thesis (Chapter 3). In this part, we brie�y
present the concepts of MAS, Runtime Veri�cation and Static Veri�cation. We
also present in detail the Linear Temporal Logic (LTL), which is used several
times in the thesis. In Chapter 4 we de�ne the base formalism we use in the
entire work – the thesis is also named after it: the trace expression formalism.
Its original version has been de�ned before starting the Ph.D. program inside
my master’s thesis. For this reason the canonical version is not considered a
novel part of the thesis and is listed here in Part II. In Chapter 5 we present
the general state of the art analysis while reserving a more speci�c study for
each single chapter.

part II I - formalism extensions. As anticipated before, since our
objective is to verify software systems – in particular MAS – it was natural
to study and propose new extensions for our formalism. In particular, we
proposed parametric (Chapter 6) and probabilistic (Chapter 7) extensions. Each
extension has its advantages and disadvantages and is presented separately
with its motivations and examples.

part IV - engineering agent interaction protocols with
trace expressions. It is the most important part of the entire work. In
this part we present how to specify Agent Interaction Protocols (Chapter 8)
using the trace expression formalism and we focus on the resulting issues
when these are used to achieve decentralized RV (Chapter 9 and Chapter 10)
and protocol conformance analysis (Chapter 11).

part V - combining static and runtime verification. RV of
MAS is interesting, but even more so when combined with static veri�cation.
During the Ph.D. program we combined our approach with existing static
veri�cation ones. In Chapter 12, we show how to model check our speci�cations
– trace expressions – with respect to a given LTL property. In Chapter 13, we
instead present a way to simplify the model checking of MAS using RV. More
speci�cally, we show how we can make assumptions on the model in order to

6

2 Structure and Contributions of the Thesis

reduce the state space explosion during the static veri�cation phase and how
to check that these assumptions still hold at runtime.

part VI - implementation and case study. We dedicated an entire
part of the thesis to the presentation of the IDE that has been developed for
supporting the trace expression formalism. In this part we also show examples
of its use through screenshots of the resulting implemented plugin while a brief
tutorial will be given at the end. The second chapter is instead dedicated to
presenting a challenging case study where we show how to use our formalism
for representing medical guidelines.

part VII - discussion. At the beginning of the thesis we present the
state of the art of our work. In particular, we present di�erent other formalisms
that are close to ours. In this part, we focus on the main di�erences with respect
to the trace expression formalism and present a comparison table listing them
(Chapter 16). In Chapter 17 we end with the conclusions and future work.

This thesis can be further divided in three macro areas:

• Part I, Part III and Part IV concern the most theoretical aspects of this
thesis. This is also the macro area of the thesis where all the theoretical
and technical background is presented as well as the algorithms for MAS
decentralized runtime veri�cation.

• Part V focuses on the hybrid combination of static and runtime veri�c-
ation. This is the part of the thesis that is more focused on the applied
aspects.

• Part VI presents the practical aspects concerning the development of the
tool supporting our runtime veri�cation approach, and a case study.

2.2 Contributions

We can classify the contributions of the thesis into four categories. The �rst
two are related to the study of new formalism extensions to increase the
range of possible uses, and of algorithms to achieve the decentralization of
speci�cations in order to obtain a decentralized runtime veri�cation approach
(extremely important in the context of multiagent systems). The last two
are instead focused more on applicative and implementation aspects (hybrid
combination of runtime and static veri�cation, and the development of a
platform supporting our veri�cation approach).

In the following paragraphs we summarize the four main contributions of
this thesis.

7

2 Structure and Contributions of the Thesis

2.2.1 Propose an expressive formalism and its extensions to support
runtime veri�cation of complex systems

In Chapters 6 and 7 we present the latest advances in the extension of the trace
expression formalism. Both these extensions allow the formalism to be used
in a larger set of scenarios. The parametric extension is useful to represent
data, objects, time and generic values within speci�cations. Thanks to this
extension, we can represent more complex systems and model more realistic
agent interaction protocols for the veri�cation of the social activities of the
agents inside a multiagent system. The probabilistic extension is useful in
scenarios where we can have uncertainty in the observed events. Considering
the multiagent system scenario, this is extremely important when we are
interested in analyzing communicative aspects where messages can be lost
or there can be issues on the communication channels. Updating the runtime
veri�cation approach to support the absence of information is extremely useful
and makes our approach reliable because, even though we do not have the
complete trace produced by the system, we can still conclude with a certain
probability that the system satis�es a given interaction protocol.

Chapter 6 is based on the following publications:

• Davide Ancona, Angelo Ferrando, and Viviana Mascardi (2016). “Theory
and Practice of Formal Methods: Essays Dedicated to Frank de Boer on
the Occasion of His 60th Birthday”. In: Cham: Springer International
Publishing. Chap. Comparing Trace Expressions and Linear Temporal
Logic for Runtime Veri�cation, pp. 47–64. isbn: 978-3-319-30734-3

• Davide Ancona et al. (2017a). “Parametric Trace Expressions for Runtime
Veri�cation of Java-Like Programs”. In: Proc. of the 19th Workshop on
Formal Techniques for Java-like Programs. ACM, 10:1–10:6. doi: 10.1145/
3103111.3104037. url: http://doi.acm.org/10.1145/3103111.
3104037

• D. Ancona, A. Ferrando, and V. Mascardi (2017). “Parametric Runtime
Veri�cation of Multiagent Systems (extended abstract)”. In: Proc. of the
16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS
2017. Ed. by Kate Larson et al. ACM, pp. 1457–1459

2.2.2 Design and de�ne the algorithms for obtaining a decentralized
runtime veri�cation approach of Agent Interaction Protocols

In Chapters 8, 9 and 10 we present how to de�ne Agent Interaction Protocols
and how to decentralize their runtime veri�cation process with or without
uncertainty. This part is more focused on the presentation of the algorithms
supporting this kind of decentralization. Most importantly, all the issues re-
lated to the representation of Agent Interaction Protocols when we want to
decentralize the monitoring of multiagent system are presented and tackled in
this part of the thesis. In Chapter 10, the decentralization study is also made

8

https://doi.org/10.1145/3103111.3104037
https://doi.org/10.1145/3103111.3104037
http://doi.acm.org/10.1145/3103111.3104037
http://doi.acm.org/10.1145/3103111.3104037

2 Structure and Contributions of the Thesis

more di�cult and innovative from the presence of gaps in the events observed
by distributed monitors.

The decentralization of agent interaction protocols also brings us to the
reuse of agents. Once we know that an agent is compliant to a protocol, as
long as we are able to assert that this protocol is conformant to another one,
we can �nd ourselves in a situation where we can reuse the agent inside a
di�erent protocol. In Chapter 11, the thesis presents and analyzes a kind of
conformance test which allows reusing agents even when the alphabets used
inside the protocols are di�erent.

Chapter 8 is based on the following publication:

• Davide Ancona et al. (2018a). “Coping with Bad Agent Interaction Pro-
tocols When Monitoring Partially Observable Multiagent Systems”. In:
PAAMS. Vol. 10978. Lecture Notes in Computer Science. Springer, pp. 59–
71

Chapter 9 is based on the following publications:

• Angelo Ferrando, Davide Ancona, and Viviana Mascardi (2017). “Decent-
ralizing MAS Monitoring with DecAMon”. In: Proc. of the 16th Conference
on Autonomous Agents and MultiAgent Systems, AAMAS 2017. Ed. by Kate
Larson et al. ACM, pp. 239–248. url: http://dl.acm.org/citation.
cfm?id=3091164

• Angelo Ferrando (2016). “Automatic Partitions Extraction to Distribute
the Runtime Veri�cation of a Global Speci�cation”. In: Proceedings of the
Doctoral Consortium of AI*IA 2016 co-located with the 15th International
Conference of the Italian Association for Arti�cial Intelligence (AI*IA 2016),
Genova, Italy, November 29, 2016. Ed. by Viviana Mascardi and Ilaria Torre.
Vol. 1769. CEUR Workshop Proceedings. CEUR-WS.org, pp. 40–45. url:
http://ceur-ws.org/Vol-1769/paper07.pdf

• Davide Ancona et al. (2016). “MAS-DRiVe: a Practical Approach to Decent-
ralized Runtime Veri�cation of Agent Interaction Protocols”. In: Proc. of
the 17th Workshop "From Objects to Agents". Ed. by Corrado Santoro, Fab-
rizio Messina, and Massimiliano De Benedetti. Vol. 1664. CEUR Workshop
Proceedings. CEUR-WS.org, pp. 35–43. url: http://ceur-ws.org/Vol-
1664/w7.pdf

Chapter 11 is based on the following publication:

• Davide Ancona, Angelo Ferrando, and Viviana Mascardi (2018a). “Agents
Interoperability via Conformance Modulo Mapping”. In: Proceedings of
the 19th Workshop "From Objects to Agents", Palermo, Italy, June 28-29,
2018. Ed. by Massimo Cossentino, Luca Sabatucci, and Valeria Seidita.
Vol. 2215. CEUR Workshop Proceedings. CEUR-WS.org, pp. 109–115. url:
http://ceur-ws.org/Vol-2215/paper_18.pdf

9

http://dl.acm.org/citation.cfm?id=3091164
http://dl.acm.org/citation.cfm?id=3091164
http://ceur-ws.org/Vol-1769/paper07.pdf
http://ceur-ws.org/Vol-1664/w7.pdf
http://ceur-ws.org/Vol-1664/w7.pdf
http://ceur-ws.org/Vol-2215/paper_18.pdf

2 Structure and Contributions of the Thesis

2.2.3 Propose a hybrid approach combining runtime and static veri�cation
of multiagent systems

In Chapters 12 and 13 we present two di�erent ways to combine model checking
and runtime veri�cation through trace expressions. In both scenarios the aim
is to create a more robust and reliable veri�cation approach since model
checking and runtime veri�cation have disadvantages which can be solved
by their combination. During the Ph.D. program, we studied many di�erent
approaches in both research �elds but we only found few proposals that
combine both of them. Some work in this direction can be found in (Ahrendt,
Pace, and Schneider, 2016; Ahrendt et al., 2016; Artho and Biere, 2005; Artho
et al., 2004; Chimento et al., 2015; Colombo, Pace, and Schneider, 2009; Gui
et al., 2013).

Chapter 12 is based on the following publication:

• Angelo Ferrando (2019). “The early bird catches the worm: First verify,
then monitor!” In: Science of Computer Programming 172, pp. 160 –179.
issn: 0167-6423. doi: https://doi.org/10.1016/j.scico.2018.11.
008. url: http://www.sciencedirect.com/science/article/pii/
S0167642318304349

Chapter 13 is based on the following publication:

• Angelo Ferrando et al. (2018a). “Recognising Assumption Violations in
Autonomous Systems Veri�cation”. In: Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems, AA-
MAS 2018, Stockholm, Sweden, July 10-15, 2018. Ed. by Elisabeth André
et al. International Foundation for Autonomous Agents and Multiagent
Systems Richland, SC, USA / ACM, pp. 1933–1935. url: http://dl.acm.
org/citation.cfm?id=3238028

2.2.4 Present a tool developed for supporting runtime veri�cation guided
by trace expressions and a case study

In Chapter 14 we present the tool which has been developed for supporting
the trace expression formalism and the automatic generation of decentralized
monitors for achieving the decentralized runtime veri�cation of multiagent
systems implemented using the JADE framework (Bellifemine, Caire, and
Greenwood, 2007).

Chapter 14 is based on the following publications:

• Angelo Ferrando (2017). “RIVERtools: an IDE for RuntIme VERi�cation
of MASs, and Beyond”. In: PRIMA Demo Track 2017

• Davide Ancona et al. (2018b). “Managing Bad AIPs with RIVERtools”. In:
PAAMS. Vol. 10978. Lecture Notes in Computer Science. Springer, pp. 296–
300

10

https://doi.org/https://doi.org/10.1016/j.scico.2018.11.008
https://doi.org/https://doi.org/10.1016/j.scico.2018.11.008
http://www.sciencedirect.com/science/article/pii/S0167642318304349
http://www.sciencedirect.com/science/article/pii/S0167642318304349
http://dl.acm.org/citation.cfm?id=3238028
http://dl.acm.org/citation.cfm?id=3238028

2 Structure and Contributions of the Thesis

In Chapter 15 we propose a case study in the �eld of Remote Patient Monit-
oring. In this case study we show how to use our formalism to formally specify
medical guidelines.

Chapter 15 is based on the following publications:

• Angelo Ferrando, Davide Ancona, and Viviana Mascardi (2016). “Monit-
oring Patients with Hypoglycemia Using Self-adaptive Protocol-Driven
Agents: A Case Study”. In: Proc. of Engineering Multi-Agent Systems - 4th
International Workshop, EMAS 2016, Revised, Selected, and Invited Papers.
Ed. by Matteo Baldoni et al. Vol. 10093. LNCS. Springer, pp. 39–58. doi:
10.1007/978-3-319-50983-9_3. url: http://dx.doi.org/10.
1007/978-3-319-50983-9_3

• Davide Ancona, Angelo Ferrando, and Viviana Mascardi (2018b). “Im-
proving �exibility and dependability of remote patient monitoring with
agent-oriented approaches”. In: Int. J. Agent-Oriented Software Engineer-
ing 6, Nos. 3/4

2.3 How to read the Thesis

In order to make the reading of the thesis easier, we decided to de�ne the
following reading sequences of the main chapters essential to understand the
contents according to reader’s interest:

• Chapter sequence for the trace expression formalism:
[Interests: Programming Languages]
– Part II - Background: 4.

– Part III - Formalism extensions: 6 and 7.

• Chapter sequence for Agent Interaction Protocols modelling:
[Interests: multiagent systems, Agent Interaction Protocols]
– Part II - Background: 4.

– Part IV - Engineering Agent Interaction Protocols: 8 and 11.

• Chapter sequence for decentralized runtime veri�cation:
[Interests: multiagent systems, (decentralized) runtime veri�cation, agent
interaction protocols]
– Part II - Background: 4.

– Part IV - Engineering Agent Interaction Protocols: 8 and 9.

– Part VI - Implementation and Case Study: 14.

• Chapter sequence for probabilistic runtime veri�cation (runtime
veri�cation with state estimation):
[Interests: multiagent systems, probabilistic (decentralized) runtime veri�c-
ation, agent interaction protocols]

11

https://doi.org/10.1007/978-3-319-50983-9_3
http://dx.doi.org/10.1007/978-3-319-50983-9_3
http://dx.doi.org/10.1007/978-3-319-50983-9_3

2 Structure and Contributions of the Thesis

– Part II - Background: 4.

– Part III - Formalism extensions: 7.

– Part IV - Engineering Agent Interaction Protocol: 8 and 10.

• Chapter sequence for hybrid combination of runtime and static
veri�cation:
[Interests: multiagent systems, runtime veri�cation, model checking]
– Part II - Background: 4.

– Part V - Combining static and runtime veri�cation: 12 and 13.

• Chapter sequence for implementation of runtime veri�cation of
Agent Interaction Protocols:
[Interests: multiagent systems, agent interaction protocols, tool implement-
ation, Integrated Development Environment design]
– Part II - Background: 4.

– Part III - Formalism extensions: (optional) 6.

– Part IV - Engineering Agent Interaction Protocol: 8 and (op-
tional) 10.

– Part VI - Implementation and Case Study: 14 and 15.

12

2 Structure and Contributions of the Thesis

4Implementation Discussion

Trace
Expressions

Decentralized
verification

Hybrid
verification

6

8

9

12 13

14
5

16

11

10

7

Agent Interaction
Protocol

depend on

better to read also

Formalism
extensions

15

Figure 2.1 . Dependency graph of the main chapters. For instance, to understand
Chapter 10 you have to read chapters 8 and 7 �rst.

13

Part II

Background

This part of the thesis has three di�erent objectives:

• to give a general background for all the contents that might be useful for
the reader to understand the contribution of the thesis;

• to present the trace expression formalism, that is the pillar of the thesis
and on which all the Ph.D. program has been built;

• to present a general state of the art of the work.

14

3 Preliminaries

“Knowing yourself is the beginning of all wisdom.”
- Aristotle

In this chapter, we present all the preliminary concepts that are
necessary to understand the contents of this thesis. A reader who
is already familiar with the notion of multiagent systems, runtime
and static veri�cation, LTL and derivates can skip this chapter and
start reading Chapter 4.

15

3 Preliminaries

3.1 Multiagent Systems and Distributed Arti�cial Intelligence

Since its inception in the mid to late 1970s distributed arti�cial intelligence
(DAI) evolved and diversi�ed rapidly. Today it is an established and promising
research and application �eld which brings together and draws on results,
concepts, and ideas from many disciplines, including arti�cial intelligence
(AI), computer science, sociology, economics, organization and management
science, and philosophy.

As de�ned in (Weiss, 1999), an agent is a computational entity such as a
software program or a robot that can be viewed as perceiving and acting upon
its environment and that is autonomous in that its behaviour at least partially
depends on its own experience. As an intelligent entity, an agent operates
�exibly and rationally in a variety of environmental circumstances given its
perceptual and e�ectual equipment. Behavioral �exibility and rationality are
achieved by an agent on the basis of key processes such as problem solving,
planning, decision making, and learning. As an interacting entity, an agent
can be a�ected in its activities by other agents and perhaps by humans. A key
pattern of event in multiagent systems is goal- and task-oriented coordination,
both in cooperative and in competitive situations. In the case of cooperation
several agents try to combine their e�orts to accomplish as a group what the
individuals cannot, and in the case of competition several agents try to get
what only some of them can have. The long-term goal of DAI is to develop
mechanisms and methods that enable agents to interact like humans (or even
better), and to understand events among intelligent entities whether they
are computational, human, or both. This goal raises a number of challenging
issues that all are centered around the elementary question of when and how
to interact with whom.

To make the above considerations more concrete, a closer look has to be
taken on multiagent systems and thus on “interacting, intelligent agents”:

• “Agents” are autonomous, computational entities that can be viewed
as perceiving their environment through sensors and acting upon their
environment through e�ectors. Since they are computational entities,
agents must exist in the form of programs that run on computing devices;
being autonomous means that to some extent they have control over their
behaviour without the intervention of humans and other systems. Agents
pursue goals or carry out tasks in order to meet their design objectives,
and in general these goals and tasks can be complementary as well as
con�icting.
For N. R. Jennings et al. (Jennings, Sycara, and Wooldridge, 1998), an agent
is a computer system, situated in some environment, that is capable of
�exible autonomous actions in order to meet its design objectives. There
are thus three key concepts in their de�nition: situatedness, autonomy,
and �exibility. In detail,
– Situatedness, in this context, means that the agent receives sensory

input from its environment and that it can perform actions which

16

3 Preliminaries

change the environment in some way;

– Autonomy is a di�cult concept to pin down precisely, but they mean
it in the sense that the system should be able to act without the direct
intervention of humans (or other agents), and that it should have
control over its own actions and internal state;

– By �exible, they mean that the system is: responsive, agents should
perceive their environment and respond in a timely fashion to
changes that occur in it, pro-active, agents should not simply act
in response to their environment, they should be able to exhibit
opportunistic, goal-directed behaviour and take the initiative where
appropriate and social, agents should be able to interact, when appro-
priate, with other arti�cial agents and humans in order to complete
their own problem solving and to help others with their activities.

• “Intelligent” indicates that the agents pursue their goals and execute
their tasks such that they optimize some given performance measures.
To say that agents are intelligent does not mean that they are omniscient
or omnipotent, nor does it mean that they never fail. Rather, it means
that they operate �exibly and rationally in a variety of environmental
circumstances, given the information they have and their perceptual and
e�ectual capabilities.

• “Interacting” indicates that the agents may be a�ected by other agents
or perhaps by humans in pursuing their goals and executing their tasks.
Events can take place indirectly through the environment in which they
are embedded (e.g., by observing one another or by carrying out an action
that modi�es the environmental state) or directly through a shared lan-
guage (e.g., by providing information in which other agents are interested
or which confuses other agents). DAI primarily focuses on coordination
as a form of event that is particularly important with respect to goal at-
tainment and task completion. The purpose of coordination is to achieve
or avoid states of a�airs that are considered as desirable or undesirable
by one or several agents. To coordinate their goals and tasks, agents
have to explicitly take dependencies among their activities into consider-
ation. Two basic, contrasting patterns of coordination are cooperation
and competition. In the case of cooperation, several agents work together
and draw on the broad collection of their knowledge and capabilities to
achieve a common goal. Against that, in the case of competition, several
agents work against each other because their goals are con�icting. Co-
operating agents try to accomplish as a team what the individuals cannot,
and so fail or succeed together. Competitive agents try to maximize their
own bene�t at the expense of others, and so the success of one implies
the failure of others.

17

3 Preliminaries

Agent Communications Language performatives

Performativity1 is a term for the capacity of speech and communication not
just to communicate but rather to act or consummate an action, or to construct
and perform an identity. A common example is the act of saying “I pronounce
you man and wife” by a licensed minister before two people who are prepared
to wed (or “I do” by one of those people upon being asked whether they take
their partner in marriage). An umpire calling a strike, a judge pronouncing
a verdict, or a union boss declaring a strike are all examples of performative
speech.
Speech Act Theory as introduced by Oxford philosopher J.L. Austin (Aus-

tin, 1962) and further developed by American philosopher J.R. Searle, considers
the types of acts that utterances can be said to perform:

• Locutionary Acts, the performance of an utterance;

• Illocutionary Acts, the pragmatic ’illocutionary force’ of the utterance;

• Perlocutionary Acts, the actual e�ect.

Agent Communication Languages (ACLs) are based on the speech act
theory: messages are actions, or communicative acts, as they are intended to
perform some action by virtue of being sent. The speci�cation consists of a set
of message types and the description of their pragmatics, that is the e�ects on
the mental attitudes of the sender and receiver agents. Every communicative
act is described with both a narrative form and a formal semantics based on
modal logic.

The most popular ACLs are:

• FIPA-ACL2 (by the Foundation for Intelligent Physical Agents, a stand-
ardization consortium);

• KQML (Finin et al., 1994) (Knowledge Query and Manipulation Language).

Both rely on the speech act theory developed by Searle in the 1960s (Searle,
1969) and enhanced by Winograd and Flores in the 1970s. They de�ne a set of
performatives, also called Communicative Acts, and their meaning (e.g. tell).
The content of the performative is not standardized, but varies from language
to language.

FIPA was originally formed as a Swiss based organization in 1996 to produce
software standards speci�cations for heterogeneous and interacting agents
and agent based systems. Since its foundations, FIPA has played a crucial
role in the development of agents standards and has promoted a number of
initiatives and events that contributed to the development and uptake of agent
technology.

1https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/
wiki/Performativity.html

2http://www.fipa.org/specs/fipa00001/, http://www.fipa.org/specs/

fipa00007/, http://www.fipa.org/specs/fipa00025/, http://www.fipa.org/

specs/fipa00037/

18

https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Performativity.html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Performativity.html
http://www.fipa.org/specs/fipa00001/
http://www.fipa.org/specs/fipa00007/
http://www.fipa.org/specs/fipa00007/
http://www.fipa.org/specs/fipa00025/
http://www.fipa.org/specs/fipa00037/
http://www.fipa.org/specs/fipa00037/

3 Preliminaries

KQML is part of the ARPA Knowledge Sharing E�ort, which is a consor-
tium to develop conventions facilitating the sharing and reuse of knowledge
bases and knowledge-based systems. Its goal is to de�ne, develop, and test
infrastructure and supporting technology to enable participants to build much
bigger and more broadly functional systems than could be achieved working
alone.

Speech act theory uses the term performative to identify the illocutionary
force of this special class of utterance. Example performative verbs include
promise, report, convince, insist, tell, request, and demand. Illocutionary forces
can be broadly classi�ed as assertives (statements of fact), directives (com-
mands in a master-slave structure), commissives (commitments), declaratives
(statements of fact), and expressives (expressions of emotion). Performatives
are usually represented in the stylized syntactic form “I hereby tell...” or “I
hereby request...” Because performatives have the special property that “saying
it makes it so,” not all verbs are performatives. For example, stating that “I
hereby solve this problem” does not create the solution. Although the term
speech is used in this discussion, speech acts have to do with communication
in forms other than the spoken word. In summary, speech act theory helps
de�ne the type of message by using the concept of the illocutionary force,
which constrains the semantics of the communication act itself. The sender’s
intended communication act is clearly de�ned, and the receiver has no doubt
as to the type of message sent. This constraint simpli�es the design of software
agents.

To make agents understand each other they have to speak the same language;
they can also have a common ontology.

In 1993, Gruber originally de�ned the notion of an ontology as an “explicit
speci�cation of a conceptualization” (Gruber, 1993). In 1997, Borst de�ned
an ontology as a “formal speci�cation of a shared conceptualization” (Borst,
1997). In 2007, Gruber revised his de�nition of ontology; in the context of com-
puter and information sciences, an ontology de�nes a set of representational
primitives with which to model a domain of knowledge or discourse. The
representational primitives are typically classes (or sets), attributes (or proper-
ties), and relationships (or relations among class members). The de�nitions
of the representational primitives include information about their meaning
and constraints on their logically consistent application (Gruber, 2009). We
present the notion of ontology here because ontologies are usually part of the
agent’s knowledge base and they are used to describe what kind of things an
agent can deal with and how they are related to each other. The connection
between ontology, semantic web and MAS is not new, and in literature we can
found di�erent works showing the advantages in the combination of these
two research areas3 (Hendler, 2001; Mascardi et al., 2011; Moreira et al., 2006).
Both ontology and agent technologies are central to the semantic web, and
their combined use will enable the sharing of heterogeneous, autonomous

3http://www.obitko.com/tutorials/ontologies-semantic-web/
fipa-ontology-service.html

19

http://www.obitko.com/tutorials/ontologies-semantic-web/fipa-ontology-service.html
http://www.obitko.com/tutorials/ontologies-semantic-web/fipa-ontology-service.html

3 Preliminaries

knowledge sources in a capable, adaptable and extensible manner. Ontology is
used throughout the MAS to assist the interactions among di�erent agents as
well as to improve the quality of the service provided by each agent.

3.2 Rational agents

The key aspect of a rational agent (Bratman, 1987; Cohen and Levesque, 1990;
Rao and George�, 1992) is that the decisions it makes, based on dynamic
motivations, should be both “reasonable” and “justi�able”. One of the most
famous and used model used for de�ning rational agents is called belief-desire-
intention (BDI) model. Belief-desire-intention architectures originated from
the work of the Rational Agency project at Stanford Research Institute in
the mid-1980s. The origins of the model lie in the theory of human practical
reasoning developed by the philosopher Michael Bratman (Bratman, 1987),
which focuses particularly on the role of intentions in practical reasoning. The
conceptual framework of the BDI model is described in (Bratman, Israel, and
Pollack, 1988), which also describes a speci�c BDI agent architecture called
IRMA. In detail, a BDI agent comprises beliefs that the agent has about itself
and its environment, desires (or goals) representing its long-term aims, and
intentions describing the agent’s immediate goals (the ones it is currently trying
to achieve through acting on the environment where it is situated). Using this
new notion of rational agent, we can rethink the multiagent system as a system
consisting of a number of rational agents interacting with each other (naturally
it is not always necessary to have rational agents inside multiagent systems).
The cooperation aspect helps to solve problems that are di�cult to solve by
individual agents or traditional computer systems. As we are going to discuss
deeply in this thesis, the social aspects are crucial for a multiagent systems and
require to be well de�ned and veri�ed in order to make the implementations
more robust and reliable.

In the following section, we are going to brie�y introduce one of the most
famous and used engine for developing BDI agents. In particular, this engine
exploits AgentSpeak (Rao, 1996) as agent-oriented programming language.

3.3 Jason

Jason4 (Bordini, Hübner, and Wooldridge, 2007) is an engine for an extended
version of the AgentSpeak language (Rao, 1996). It implements the operational
semantics of that language, and provides a platform for the development of
multiagent systems, with many user-customisable features. Jason is available
Open Source, and is distributed under GNU LGPL.

One of the most interesting aspects of AgentSpeak is that it was inspired by
and based on a model of human behaviour that was developed by philosophers,
the BDI model.

We mentioned here Jason because is one of the most famous and used agent
platform supporting the BDI model. Besides AgentSpeak, other languages

4http://jason.sourceforge.net/

20

http://jason.sourceforge.net/

3 Preliminaries

developed for programming rational agents include 3APL (Dastani, Riemsdijk,
and Meyer, 2005; Hindriks et al., 1997), DRIBBLE (Riemsdijk, Hoek, and Meyer,
2003), Jadex (Pokahr, Braubach, and Lamersdorf, 2005), GOAL (Boer et al.,
2007; Hindriks et al., 2000), CAN (Winiko� et al., 2002), SAAPL (Winiko�,
2007), GWENDOLEN (Dennis and Farwer, 2008), and METATEM (Fisher and
Ghidini, 2010; Fisher and Hepple, 2009).

3.4 JADE

JADE5 (Java Agent DEvelopment Framework) (Bellifemine, Caire, and Green-
wood, 2007) is a software Framework fully implemented in the Java language.
It simpli�es the implementation of multiagent systems through a middleware
that complies with the FIPA speci�cations6 and through a set of graphical tools
that support the debugging and deployment phases. A JADE-based system
can be distributed across machines (which not even need to share the same
OS) and the con�guration can be controlled via a remote GUI. The con�gur-
ation can be even changed at run-time by moving agents from one machine
to another, as and when required. JADE is completely implemented in Java
language and the minimal system requirement is the version 5 of JAVA (the
run time environment or the JDK).

Besides the agent abstraction, JADE provides a simple yet powerful task
execution and composition model, peer to peer agent communication based
on the asynchronous message passing paradigm, a yellow pages service sup-
porting publish subscribe discovery mechanism and many other advanced
features that facilitate the development of a distributed system.

Thanks to the contribution of the LEAP project7, ad hoc versions of JADE
exist designed to deploy JADE agents transparently on di�erent Java-oriented
environments such as Android devices and J2ME-CLDC MIDP 1.0 devices8.
Furthermore suitable con�gurations can be speci�ed to run JADE agents in
networks characterized by partial connectivity including NAT and �rewalls as
well as intermittent coverage and IP-address changes.

3.4.1 Architecture

This and the next section on JADE architecture are taken from the tutorial9
and the book (Bellifemine, Caire, and Greenwood, 2007) with no or limited
changes, and are included in this Ph.D. thesis to make it self-contained.

5http://jade.tilab.com/
6http://www.fipa.org/specs/fipa00001/, http://www.fipa.org/specs/

fipa00007/, http://www.fipa.org/specs/fipa00025/, http://www.fipa.org/

specs/fipa00037/
7LEAP is the name of the European IST project that developed the LEAP add-on. The Consor-

tium of the LEAP Project was formed by Motorola, Siemens AG, Telecom Italia, Broadcom,
University of Parma and ADAC.

8https://www.oracle.com/technetwork/java/faqs-140539.html
9http://jade.tilab.com/doc/tutorials/JADEProgramming-Tutorial-for-beginners.
pdf

21

http://jade.tilab.com/
http://www.fipa.org/specs/fipa00001/
http://www.fipa.org/specs/fipa00007/
http://www.fipa.org/specs/fipa00007/
http://www.fipa.org/specs/fipa00025/
http://www.fipa.org/specs/fipa00037/
http://www.fipa.org/specs/fipa00037/
https://www.oracle.com/technetwork/java/faqs-140539.html
http://jade.tilab.com/doc/tutorials/JADEProgramming-Tutorial-for-beginners.pdf
http://jade.tilab.com/doc/tutorials/JADEProgramming-Tutorial-for-beginners.pdf

3 Preliminaries

A JADE platform is composed of agent containers that can be distributed
over the network. Agents live in containers which are the Java process that
provide the JADE runtime and all the services needed for hosting and executing
agents. There is a special container, called the main container, which represents
the bootstrap point of a platform: it is the �rst container to be launched and
all other containers must join to a main container by registering with it.

Each agent is identi�ed by a globally unique name (the AgentIdenti�er, or
AID, as de�ned by FIPA). It can join and leave a host platform at any time and
can discover other agents through both white-page and yellow-page services.

When the main container is launched, two special agents are automatically
instantiated and started by JADE, whose roles are de�ned by the FIPA Agent
Management standard:

1. The Agent Management System (AMS) is the agent that supervises
the entire platform. It is the contact point for all agents that need to
interact in order to access the white pages of the platform as well as
to manage their life cycle. Every agent is required to register with the
AMS (automatically carried out by JADE at agent start-up) in order to
obtain a valid AID.

2. The Directory Facilitator (DF) is the agent that implements the yellow
pages service, used by any agent wishing to register its services or search
for other available services. The JADE DF also accepts subscriptions
from agents that wish to be noti�ed whenever a service registration
or modi�cation is made that matches some speci�ed criteria. Multiple
DFs can be started concurrently in order to distribute the yellow pages
service across several domains. These DFs can be federated, if required,
by establishing cross-registrations with one another which allow the
propagation of agent requests across the entire federation.

3.4.2 Creating agents

Creating a JADE agent is as simple as de�ning a class that extends the
jade.core.Agent class and implementing the setup() method as exempli-
�ed in the code below.
import jade.core.Agent;
public class HelloWorldAgent extends Agent {

protected void setup() {
// Printout a welcome message
System.out.println("Hello World. I’m an agent!");

}
}

More appropriately a class, such as the HelloWorldAgent class shown
above, represents a type of agent exactly as a normal Java class represents a type
of object. Several instances of the HelloWorldAgent class can be launched at
runtime. Unlike normal Java objects, which are handled by their references, an
agent is always instantiated by the JADE run-time and its reference is never

22

3 Preliminaries

disclosed outside the agent itself (unless of course the agent does that expli-
citly). Agents never interact through method calls but rather by exchanging
asynchronous messages.

The setup() method is intended to include agent initializations. The actual
job an agent has to perform is typically carried out within “behaviours”. Ex-
amples of typical operations that an agent performs in its setup() method are:
showing a GUI, opening a connection to a database, registering the services it
provides in the yellow pages catalogue and starting the initial behaviours. It is
good practice not to de�ne any constructor in an agent class and to perform
all initializations inside the setup() method. This is because at construction
time the agent is not yet linked to the underlying JADE run-time and thus
some of the methods inherited from the Agent class may not work properly.

3.4.2.1 Agent identi�ers

Consistent with the FIPA speci�cations, each agent instance is identi�ed by
an “agent identi�er”. In JADE an agent identi�er is represented as an instance
of the jade.core.AID class. The getAID() method of the Agent class allows
retrieval of the local agent identi�er. An AID object includes a globally unique
name (GUID) plus a number of addresses. The name in JADE has the form
<local-name>@<platform-name> such that an agent called Peter living on a
platform called foo-platform will have Peter@foo-platform as its globally
unique name. The addresses included in the AID are the addresses of the
platform the agent inhabits. These addresses are only used when an agent
needs to communicate with another agent living on a di�erent compliant FIPA
platform.

The AID class provides methods to retrieve the local name (getLocalName()),
the GUID (getName()) and the addresses (getAllAddresses()).

We can therefore enrich the welcome message of our HelloWorldAgent as
follows:
protected void setup() {
// Printout a welcome message
System.out.println("Hello World. I’m an agent!");
System.out.println("My local-name is "+getAID().getLocalName());
System.out.println("My GUID is "+getAID().getName());
System.out.println("My addresses are:");
Iterator it = getAID().getAllAddresses();
while (it.hasNext()) {
System.out.println("- "+it.next());

}
}

The local name of an agent is assigned at start-up time by the creator and
must be unique within the platform. If an agent with the same local name
already exists in the platform, the JADE runtime prevents the creation of the
new agent.
String localname = "Peter";
AID id = new AID(localname, AID.ISLOCALNAME);

23

3 Preliminaries

The platform name is automatically appended to the GUID of the newly created
AID by the JADE runtime. Similarly, knowing the GUID of an agent, its AID
can be obtained as follows:
String guid = "Peter@foo-platform";
AID id = new AID(guid, AID.ISGUID);

3.4.2.2 Agent initialization

The HelloWorldAgent class described previously can be compiled, as with
normal Java classes, by typing:

javac -classpath <JADE-classes> HelloWorldAgent.java

Of course the JADE libraries must be in the Classpath for the compilation to
succeed. At that point, in order to execute a Hello World agent, i.e. an instance
of the HelloWorldAgent class, the JADE runtime must be started and a local
name for the agent to execute must be chosen:

java -classpath <JADE-classes>;. jade.Boot Peter:HelloWorldAgent

This command starts the JADE runtime and tells it to launch an agent whose
local name is Peter and whose class is HelloWorldAgent. Again both the
JADE libraries and the HelloWorldAgent class must be in the Classpath. As a
result of the typed command, the following printouts produced by the Hello
World agent should appear.

Hello World. I’m an agent!

My local-name is Peter

My GUID is Peter@anduril:1099/JADE

My addresses are:

- http://anduril:7778/acc

3.4.2.3 Agent tasks

The actual job, or jobs, an agent has to do is carried out within “behaviours”.
A behaviour represents a task that an agent can carry out and is implemented
as an object of a class that extends jade.core.behaviours.Behaviour. To
make an agent execute the task implemented by a behaviour object, the beha-
viour must be added to the agent by means of the addBehaviour() method
of the Agent class.

Behaviours can be added at any time when an agent starts up (in the setup()
method) or from within other behaviours. Each class extending Behaviour

must implement two abstract methods. The action() method de�nes the
operations to be performed when the behaviour is in execution. The done()
method returns a boolean value to indicate whether or not a behaviour has
completed and is to be removed from the pool of behaviours an agent is
executing.

24

3 Preliminaries

behaviour scheduling and execution. An agent can execute
several behaviours concurrently. However, it is important to note that the
scheduling of behaviours in an agent is not pre-emptive (as for Java threads),
but cooperative. This means that when a behaviour is scheduled for execution
its action() method is called and runs until it returns. Therefore it is the
programmer who de�nes when an agent switches from the execution of one
behaviour to the execution of another.

This approach often creates di�culties for inexperienced JADE developers
and must always be kept in mind when writing JADE agents. Though requiring
an additional e�ort, this model does have several advantages:

• It allows a single Java thread per agent which is quite important especially
in environments with limited resources such as cellphones.

• It provides improved performance since behaviour switching is far faster
than Java thread switching.

• It eliminates all synchronization issues between concurrent behaviours
accessing the same resources since all behaviours are executed by the
same Java thread. This also results in a performance enhancement.

• When a behaviour switch occurs, the status of an agent does not include
any stack information, implying that it is possible to take a ‘snapshot’
of it. This allows the implementation of some important advanced fea-
tures, such as saving the status of an agent in a persistent storage for
later resumption (agent persistency), or transferring the agent to another
container for remote execution (agent mobility).

It is important to note that a behaviour such as that shown below will prevent
any other behaviour from being executed because its action() method will
never return.
public class OverbearingBehaviour extends Behaviour {

public void action() {
while (true) {
// do something

}
}
public boolean done() {

return true;
}

}

one-shot behaviour, cyclic behaviour and generic beha-
viours. The three primary behaviour types available with JADE are as
follows:

1. One-shot behaviours are designed to complete in one execution phase;
their action() method is thus executed only once.

25

3 Preliminaries

The jade.core.behaviours.OneShotBehaviour class already imple-
ments the done() method by returning true and can be conveniently
extended to implement new one-shot behaviours.
public class MyOneShotBehaviour extends OneShotBehaviour {

public void action() {
// perform operation X

}
}

In this example, operation X is performed only once.

2. Cyclic behaviours are designed to never complete; their action() method
executes the same operations each time it is called.
The jade.core.behaviours.CyclicBehaviour class already imple-
ments the done() method by returning false and can be conveniently
extended to implement new cyclic behaviours.
public class MyCyclicBehaviour extends CyclicBehaviour {

public void action() {
// perform operation Y

}
}

In this example, operation Y is performed repetitively until the agent
executing the behaviour terminates.

3. Generic behaviours embed a status trigger and execute di�erent op-
erations depending on the status value. They complete when a given
condition is met.
public class ThreeStepBehaviour extends Behaviour {

private int step = 0;
public void action() {

switch (step) {
case 0:
// perform operation X
step++;
break;

case 1:
// perform operation Y
step++;
break;

case 2:
// perform operation Z
step++;
break;

}
}
public boolean done() {

return step == 3;
}

}

26

3 Preliminaries

In this example, the step member variable implements the status of the
behaviour. Operations X, Y and Z are performed sequentially after which
the behaviour completes.

JADE also provides the possibility of composing behaviours together to create
complex behaviours.

scheduling operations. JADE provides two ready-made classes
(in the jade.core.behaviours package) which can be implemented to pro-
duce behaviours that execute at selected points in time.

1. The WakerBehaviour has action() and done()methods pre-implemented
to execute the onWake() abstract method after a given timeout (speci�ed
in the constructor) expires. After the execution of the onWake() method
the behaviour completes.
public class MyAgent extends Agent {

protected void setup() {
System.out.println("Adding waker behaviour");
addBehaviour(new WakerBehaviour(this, 10000) {

protected void onWake() {
// perform operation X

}
});

}
}

In this example, operation X is performed 10 seconds after the ’Adding
waker behaviour’ text is printed.

2. The TickerBehaviour has action() and done()methods pre-implemented
to execute the onTick() abstract method repetitively, waiting a given
period (speci�ed in the constructor) after each execution.
A TickerBehaviour never completes unless it is explicitly removed or
its stop() method is called.
public class MyAgent extends Agent {

protected void setup() {
addBehaviour(new TickerBehaviour(this, 10000) {

protected void onTick() {
// perform operation Y

}
});

}
}

In this example, operation Y is performed periodically every 10 seconds.

3.5 Techniques for checking the system’s behaviour

There are two main approaches for verifying a software system: Static Veri-
�cation and Runtime Veri�cation. Static Veri�cation includes all that kind

27

3 Preliminaries

of veri�cation techniques where the code is inspected before it is executed.
One of the most famous approaches in this research area is Model Check-
ing (Clarke, Grumberg, and Peled, 1999; Merz, 2001). In a nutshell, Model
Checking is a method to algorithmically verify formal systems. Namely, the
veri�cation is done on a model that has been derived directly from the real
software/hardware one. The properties that are usually checked through these
kind of approaches are temporal logic formulas. Conversely, Runtime Veri�ca-
tion checks the software/hardware system directly when the system is running.
The main di�erence between the two approaches lies in which types of events
they check, and when. Model checking generates the events trying to cover
the entire model’s behaviour, for this reason is an exhaustive approach (pros)
at the expense of performance (cons), while Runtime Veri�cation observes
the events when these are generate by the system execution, thus it is not
exhaustive because can only check the current observed behaviour (cons), but
it presents better performances and is usually a less invasive approach (pros),
as we are going to see in the rest of the thesis.

3.5.1 Model checking

Model checking (Clarke, Grumberg, and Peled, 1999) is a technique for veri-
fying �nite state concurrent systems such as sequential circuit designs and
communication protocols. It has a number of advantages over traditional ap-
proaches that are based on simulation, testing, and deductive reasoning. In
particular, model checking is automatic and usually quite fast. Also, if the
design contains an error, model checking will produce a counterexample that
can be used to pinpoint the source of the error. The method, which was awar-
ded the 1998 ACM Paris Kanellakis Award for Theory and Practice, has been
used successfully in practice to verify real industrial designs, and companies
are beginning to market commercial model checkers.

Figure 3.1 . Model checking procedure (Gluch et al., 2019)

The main challenge in model checking is dealing with the state space explo-

28

3 Preliminaries

sion problem. This problem occurs in systems with many components that can
interact with each other or systems with data structures that can assume many
di�erent values. In such cases the number of global states can be enormous.
Researchers have made considerable progress on this problem over the last
ten years.

Below we report the main advantages and disadvantages in the use of model
checking technique (Clarke, 2008).
Main advantages of model checking:

• the user does not need to construct a correctness proof;

• it is fast compared to other rigorous methods such as the use of a proof
checker;

• if the speci�cation is not satis�ed, the model checker will produce a
counterexample execution trace that shows why the speci�cation does
not hold;

• it has no problem with partial speci�cations;

• it supports Temporal Logics which can easily express many of the prop-
erties that are needed for reasoning about concurrent systems, this is
important because reasoning on the concurrency is often quite subtle and
it is di�cult to verify all possible cases manually.

Main disadvantages of model checking:

• Writing speci�cations is hard. This is also true for other veri�cation tech-
niques like automated theorem proving (this also occurs in the runtime
veri�cation context).

• State explosion is a major problem. The number of global system states of
a concurrent system with many processes or complicated data structures
can be enormous. All model checkers su�er from this problem. In fact, the
state explosion problem has been the driving force behind much of the
research in model checking and the development of new model checkers.

3.5.2 Runtime veri�cation

Runtime veri�cation is being pursued as a lightweight veri�cation technique
complementing veri�cation techniques such as model checking and testing
and establishes another trade-o� point between these forces. One of the main
distinguishing features of runtime veri�cation is due to its nature of being
performed at runtime, which opens up the possibility to act whenever incorrect
behaviour of a software system is detected.

We follow (Delgado, Gates, and Roach, 2004; Leucker and Schallhart, 2009)
and de�ne a software failure as a deviation between the observed behaviour
and the required behaviour of the software system. A fault is de�ned as the
deviation between the current behaviour and the expected behaviour, which
is typically identi�ed by a deviation of the current and the expected state of

29

3 Preliminaries

the system. A fault might lead to a failure, but not necessarily. An error, on the
other hand, is a mistake made by a human that results in a fault and possibly
in a failure. According to IEEE (“IEEE Standard for Software Veri�cation and
Validation” 2005), veri�cation comprises all techniques suitable for showing
that a system satis�es its speci�cation. Traditional veri�cation techniques
comprise theorem proving (Bertot and Castran, 2010), model checking (Clarke,
Grumberg, and Peled, 1999). Traditional validation techniques comprise testing
(Broy et al., 2005a; Myers and Sandler, 2004). A relatively new direction of
veri�cation is runtime veri�cation, which manifested itself within the previous
years as a lightweight veri�cation technique.

De�nition 1. Runtime veri�cation (Leucker and Schallhart, 2009) is the discip-
line of computer science that deals with the study, development, and application
of those veri�cation techniques that allow checking whether a run of a system
under scrutiny satis�es or violates a given correctness property.

In runtime veri�cation (RV) dynamic checking of the correct behaviour of
a system can be performed by a monitor which is generated from a formal
speci�cation of the properties to be veri�ed.

As happens for formal static veri�cation, RV relies on a high level speci�c-
ation formalism to specify the expected properties of a system; similarly to
testing, RV is a lightweight, e�ective but non exhaustive technique to verify
complex properties of a system at runtime.

In contrast to formal static veri�cation and testing, RV o�ers opportunities
for error recovery which make this approach more attractive for the develop-
ment of reliable software: not only a system can be constantly monitored for
its whole lifetime to detect possible misbehavior, but also appropriate handlers
can be executed for error recovery.
Main advantages of runtime veri�cation:

• it ensures that the system may be stopped the moment issues are identi�ed
in a tractable manner;

• veri�cation is not invasive, the system running should not be a�ected10 by
the presence of the monitor, this is because the monitor does not need to
generate the traces that have to checked (in this way the state explosion
problem, which is typical of the static veri�cation, does not happen);

• veri�cation continues beyond system deployment.

Main disadvantages of runtime veri�cation:

• it cannot prevent a wrong execution to take place, as it only veri�es actual,
already happened, traces of events.

3.5.3 Runtime veri�cation versus Model checking

Runtime veri�cation has its origins in model checking, and, to a certain extend,
the key problem of generating monitors is similar to the generation of automata
10Adding/Removing the monitor should not in�uence the system.

30

3 Preliminaries

in model checking. However, there are also important di�erences to model
checking:

• While in model checking, all executions of a given system are examined
to answer whether they satisfy a given correctness property φ, which
corresponds to the language inclusion problem, runtime veri�cation deals
with the word problem.

• While model checking typically considers in�nite traces, runtime veri�c-
ation deals with �nite executions - as executions have necessarily to be
�nite.

• While in model checking a complete model is given allowing to con-
sider arbitrary positions of a trace, runtime veri�cation, especially when
dealing with online monitoring, considers �nite executions of increasing
size. For this, a monitor should be designed to consider executions in an
incremental fashion.

These di�erences make it necessary to adapt the concepts developed in
model checking to be applicable in runtime veri�cation. For example, while
checking a property in model checking using a kind of backwards search in the
model is sometimes a good choice, it should be avoided in online monitoring
as this would require, in the worst case, the whole execution trace to be stored
for evaluation.

Furthermore, model checking su�ers from the state explosion problem,
which terms the fact that analyzing all executions of a system is typically
been carried out by generating the whole state space of the underlying system,
which is often huge. Considering a single run, on the other hand, does usually
not yield any memory problems, provided that when monitoring online only
a �nite history of the execution has to be stored. Last but not least, in online
monitoring, the complexity for generating the monitor is typically negligible,
as the monitor is often only generated once. However, the complexity of the
monitor, i.e. its memory and computation time requirements for checking
an execution are of important interest, as the monitor is part of the running
system and should not in�uence the it.

3.6 LTL

As we have mentioned before, usually in veri�cation we are interested in
checking a speci�c kind of properties: temporal properties. One of the most
used ways to represent these properties is through temporal logic, such as
Linear Temporal Logic (LTL) (Pnueli, 1977). LTL is a modal logic which has
been introduced for specifying temporal properties of systems; despite its
original main application is static veri�cation through model checking, more
recently it has been adopted as a speci�cation formalism for RV, and some RV
tools support it (Chen and Rosu, 2007; Luo et al., 2014a).

31

3 Preliminaries

3.6.1 LTL syntax and semantics

Given a �nite set of atomic propositions AP , the set of LTL formulas over AP
is inductively de�ned as follows:

• true is an LTL formula;

• if p ∈ AP then p is an LTL formula;

• if φ andψ are LTL formulas then ¬ψ , φ∨ψ , Xψ , and φUψ are LTL formu-
las.

Additional operators can be derived in the standard way: φ∧ψ = ¬(¬φ∨¬ψ),
φ ⇒ ψ = ¬φ∨ψ , Fφ (or ♦φ) = trueUφ, and Gφ (or �φ) = ¬(trueU¬φ).

Let Σ = 2AP be the set of all possible subsets of AP ; if p ∈ AP and a ∈ Σ,
then p holds in a i� p ∈ a. An LTL model is an in�nite trace w ∈ Σω ; w(i)
denotes the element a ∈ Σ at position i in trace w ; more formally, if w = aw ′,
then w(0) = a, and w(i) = w ′(i − 1) if i > 0.

The semantics of a formula φ depends by the satisfaction relation w, i � φ

(w satis�es φ in i) de�ned as follows:

• w, i � p i� p ∈ w(i);

• w, i � ¬ϕ i� w, i 2 ϕ;

• w, i � φ ∨ψ i� w, i � φ or w, i � ψ ;

• w, i � Xφ i� w, i + 1 � φ (next operator);

• w, i � φUψ i� ∃j ≥ 0 w, j � ψ and ∀0 ≤ k < j w,k � φ (until operator).

Finally, w � φ (w satis�es φ) holds i� w, 0 � φ holds.
We recall that the set of all models of LTL formulas is the language of

star-free ω-regular languages over Σ (Cohen, Perrin, and Pin, 1993).
In order to encode an LTL formula into an equivalent trace expression

we exploit the result stating that an LTL formula can be translated into an
equivalent non deterministic Büchi automaton (Bauer, Leucker, and Schallhart,
2009).

3.6.2 Non deterministic Büchi Automaton

A Büchi automaton (Büchi, 1990) is a type of ω-automaton which extends
a �nite automaton to in�nite inputs. It accepts an in�nite input sequence if
there exists a run of the automaton that visits (at least) one of the �nal states
in�nitely often.

A (non deterministic) Büchi automaton (NBA) is a tuple (Σ,Q,Q0,δ , F),
where

• Σ is a �nite alphabet;

• Q is a �nite non-empty set of states;

32

3 Preliminaries

• Q0 ⊆ Q is a set of initial states;

• δ :Q × Σ→ 2Q is a transition function;

• F ⊆ Q is a set of accepting states.

A run of an automaton (Σ,Q,Q0,δ , F) on a word w ∈ Σω is an in�nite trace
ρ = q0w(0)q1w(1)q2 . . ., s.t. q0 ∈ Q0, and for all i ≥ 0 qi+1 ∈ δ (qi ,w(i)). A run
ρ is called accepting i� Inf (ρ) ∩ F , ∅, where Inf (ρ) denotes the states visited
in�nitely often.

3.6.3 LTL Model Checking

After having de�ned a LTL property φ, we might be interested in knowing if
our model of the system M satis�es it. This kind of problem can be formulated
in the following way.

Given a model M and a LTL formula φ:

1. all traces of M must satisfy φ;

2. if a trace of M does not satisfy φ we have found a Counterexample.

We call ΣM the set of traces of M and Σφ the set of traces that satisfy φ.
We check if ΣM ∩ Σ¬φ = Ø.

3.6.4 Automata-Based Model Checking

One of the most standard approaches is passing through the generation of
a Büchi Automaton. Starting from our model M and the LTL property φ we
want to verify on it, we generate the corresponding Büchi Automata. After
that, to check if ΣM ∩ Σ¬φ = Ø, it is enough to make the product of the two
Büchi Automata and search if there exist a trace that belongs to it.

To be more clear, the steps we follow are these.
Given a model M and a LTL formula φ:

1. build the Büchi Automaton B¬φ ;

2. compute product of M and B¬φ ;

3. the product accepts the traces ofM that are also traces of B¬φ (ΣM ∩Σ¬φ);

4. if at least one sequence is accepted by the product, then we have found
one counterexample.

3.6.5 LTL3

LTL3 is a a three-valued semantics (Bauer, Leucker, and Schallhart, 2009) for
LTL formulas, devised to adapt the standard semantics to RV, to correctly
consider the limitation that at runtime only �nite traces can be checked.

33

3 Preliminaries

Given a �nite trace σ ∈ Σ∗ of length |σ | = n, a continuation of σ is an
in�nite trace w ∈ Σω s.t. for all 0 ≤ i < n w(i) = σ (i).

Given a �nite trace σ ∈ Σ∗, and an LTL formula φ, the LTL3 semantics of φ,
denoted by σ �3 φ, is de�ned as follows:

σ �3 φ =


> i� w � φ for all continuations w of σ
⊥ i� w 2 φ for all continuations w of σ
? i� neither of the two conditions above holds

As an example, let us consider the formula φ = pUq, where p,q ∈ AP ; ac-
cording to the de�nition above, {p}{p}{q} �3 φ = >, that is, φ is satis�ed
by the �nite trace {p}{p}{q}, and monitoring succeeds; {p}{p}∅ �3 φ = ⊥,
that is, φ is not satis�ed by the �nite trace {p}{p}∅, and monitoring fails;
�nally, {p}{p}{p} �3 φ =?, that is, at this stage monitoring is inconclusive, and
the monitor has to keep monitoring the property expressed by φ. Assuming
that AP = {p,q}, the LTL3 semantics of pUq corresponds to the �nite state
machine (FSM) de�ned in Figure 12.1, which fully determines the expected
behaviour of a monitor for the RV of pUq.

?start

>⊥

{p}

∅

{p,q}

{q}

∅

{p} {p,q}

{q}

∅

{p} {p,q}

{q}

Figure 3.2 . FSM of the monitor for pUq, with AP = {p,q}

More in general, for all LTL formulas φ, it is possible to build an FSM which
is a deterministic �nite automaton (DFA) where the alphabet is Σ (that is, 2AP),
all states are �nal, each state returns either > (successful), or ⊥ (failure), or ?
(inconclusive), and the behaviour of the FSM respects the LTL3 semantics of
φ: for all �nite traces σ ∈ Σ∗, the FSM accepts σ with �nal state that returns
v ∈ {>,⊥, ?} i� σ �3 φ = v .

The sequence of steps required to generate from an LTL formula φ an FSM
that respects the LTL3 semantics of φ is summarized in Figure 3.3.

For each LTL formula φ and ¬φ (1), the equivalent NBAs Aφ , and A¬φ
are built (2), all states that generate a non empty language are identi�ed
(3) and made �nal and the NBAs are transformed into the corresponding
nondeterministic �nite automata NFAs Âφ , and Â¬φ (4), and, then, in the
equivalent11 DFAs Ãφ and Ã¬φ (5). Finally, the product of Ãφ and Ã¬φ is
11For each NFA we can always �nd a DFA recognizing the same formal language.

34

3 Preliminaries

Input (1)Formula (2)NBA (3)Emptiness per state (4)NFA (5)DFA (6)FSM

φ // Aφ // F φ // Âφ // Ãφ

''
φ

66

((

Mφ

¬φ // A¬φ // F ¬φ // Â¬φ // Ã¬φ

77

Figure 3.3 . Steps required to generate an FSM from an LTL formula φ

computed, and from it the �nal FSMMφ is derived by minimization, and by
classifying the states in the following way: (q,q′) returns > i� q′ is not �nal
in Ã¬φ , ⊥ i� q is not �nal in Ãφ , and ? if both q and q′ are �nal in Ãφ , and
Ã¬φ , respectively.

3.7 Model Checking Agent Programming Languages

Althought model checking was born more than 35 years ago, its application
to MAS is almost recent (Bordini et al., 2004, 2006; Kacprzak, Lomuscio, and
Penczek, 2004; Raimondi and Lomuscio, 2007). This is due to the fact that the
veri�cation of agent-oriented programs poses new challenges that have not yet
been adequately addressed, particularly within the context of practical model
checking tools. For instance, in agent-based systems is vital to verify not only
the behaviour that the system has, but also why the agents are undertaking
certain courses of action within the multiagent system.

One of the most widespread model checkers for MAS is the Model Checking
Agent Programming Languages (MCAPL) (Dennis et al., 2012).

MCAPL consists of two components:

• The �rst is the Agent Infrastructure Layer (AIL), which is a set of Java
classes designed to act as a toolkit for creating interpreters for BDI Agent
Programming Languages, such as Jason (Section 3.3). This toolkit is de-
signed to make the construction of such interpreters quick and easy once
an operational semantics is provided.

• The second is Agent JPF (AJPF), a version of the Java Path�nder (JPF)
model checker (Havelund, 1999; Havelund and Pressburger, 2000; Visser
et al., 2003) which has been extended with a property speci�cation lan-
guage appropriate for agent programs and some Java interfaces suitable
for encapsulating multiagent systems in an e�cient fashion.

35

3 Preliminaries

Figure 3.4 . AJPF architecture (Bordini et al., 2008)

3.8 Hidden Markov Models

A Hidden Markov Model (HMM (Baum and Petrie, 1966; Rabiner and Juang,
1986)) is a statistical Markov model where the system being modeled is assumed
to be a Markov process with hidden states. It can be modeled as a quintuple
H = 〈S,A,V ,B,Π〉 where

• S = {s1, ..., sNs } is the set of states;

• A is the Ns × Ns transition probability matrix: Ai, j = Pr(state is sj at time
t + 1 | state is si at time t);

• V = {v1, ...,vNv } is the set of observation symbols;

• B is the Ns × Nv observation probability matrix: Bi, j , also denoted with
bi (vj) for clarity, is Pr(vj is observed at time t | state is si at time t);

• Π = {π1, ...,πNs } is the initial state distribution: πi is the probability that
the initial state is si .

To compute the probability that an HMM H ends in a speci�c state given an
observation sequence O = 〈O1,O2, ...,OT 〉, we can use the forward algorithm
(Rabiner, 1990). Let Q = 〈q1,q2, ...,qT 〉 denote the (unknown) state sequence
that the system passed through, i.e., qt denotes the state of the system when
observation Ot is made. Let αt (i) = Pr (O1,O2, ...,Ot ,qt = si |H), i.e., the
probability that the �rst t observations yield O1,O2, ...,Ot and that qt is si ,
given the model H .

36

3 Preliminaries

The base case is:
α1(j) = πjbj (O1) for 1 ≤ j ≤ Ns

whereas the recursive case is:

αt+1(j) = (Σi=1..Nsαt (i)Ai, j)bj (Ot+1) for 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ Ns

3.9 Global Types

Global types (Ancona, Drossopoulou, and Mascardi, 2012; Mascardi and Ancona,
2013) are behavioral types for specifying and verifying multiparty protocols
involving many distributed components, inspired by the process algebra ap-
proach. The constrained global types (Ancona, Barbieri, and Mascardi, 2013)
are an extension of the formalism of global types in multiagent systems resul-
ted from a previous work with a mechanism for easily expressing constrained
shu�e of message sequences; accordingly, it has been extended the semantics
to include the newly introduced feature, and show the expressive power of
these “constrained global types”. In (Ancona, Barbieri, and Mascardi, 2013) the
authors showed how constrained global types can be used to generate monitor
agents which were able to check the behaviour of other agents inside the
system. Given a protocol expressed using constrained global types, monitors
are able to verify the compliance of agents to the protocol.

The two key concepts underlying global types are events and event types.

events. An event e is any observable event taking place in the MAS en-
vironment, including communicative actions, actions performed by agents,
agent location and moves, and actions performed by artifacts. We do not face
the transduction problem and assume that events are translated into symbols
that agents can manipulate by some mediator between the agents and the
environment.

event types . From a logical point of view, an event type ϑ is a predicate
on events. Its interpretation is the set of events that verify ϑ ; we write e ∈ ϑ
to mean that ϑ is true on e , and we also say that e has type ϑ .
We can better explain the event types with an example:

transport(policeman(marcus), prisoner(alice),

from(jail), to(room1), by(car))

∈ move(alice, jail, room1).

With respect to the actual event that took place in the environment and that
was transduced into a symbolic form, the event type may be identi�ed by a
di�erent functor symbol with di�erent arguments (like in example, where
“move(...)” is the event type of a “transport(..)” event) and may abstract some
details which are not relevant for the monitoring activities.

37

3 Preliminaries

3.9.1 Syntax

The protocol speci�cation using global types represents a set of possibly
in�nite traces of events and is de�ned on top of the following operators:
• ϵ (empty trace), representing the singleton set {ϵ} containing the empty trace
ϵ of events.
• ϑn :τ (sequence with producer), representing the set of all traces whose �rst
event e matches the event type ϑ (e ∈ ϑ), and the remaining part is a trace
in the set represented by τ . The integer n speci�es the least required number
of times e ∈ ϑ has to be “consumed” to allow a transition labeled by e. Each
occurrence of a producer event type must correspond to the occurrence of a
new event; in contrast, consumer event types correspond to the same event
speci�ed by a certain producer event type. The purpose of consumer event
types is to impose constraints between branches of the fork operator, without
introducing new events.
• ϑ :τ (sequence with consumer), representing the set of all traces where e ∈ ϑ ,
and the remaining part is a trace in the set represented by τ . ϑ must match
with a producer ϑn event type available in another fork branch of the protocol.
• τ1+τ2 (choice), representing the union of the traces of τ1 and τ2.
• τ1 |τ2 (fork), representing the set obtained by shu�ing the traces in τ1 with
the traces in τ2.
• τ1 · τ2 (concat), representing the set of traces obtained by concatenating the
traces of τ1 with those of τ2.

Global types are regular terms, that is, can be cyclic (recursive), and hence
they can be represented by a �nite set of syntactic equations. To make the
treatment simpler, we limit our investigation to contractive (a.k.a. guarded)
and deterministic global types. A global type τ is contractive if all in�nite
paths12 in τ contain an occurrence of the “:” constructor. Determinism ensures
that dynamic checking can be performed e�ciently without backtracking.
Intuitively, a global type is deterministic if, in case more transition rules can
be applied when event e takes place, they lead to equivalent global types.

3.9.2 Semantics

The state of a global type τ can be represented by τ itself. In this section, when
talking about global types we will refer to their current state. Also, we will
use “global type” and “protocol” interchangeably.

The interpretation of a global type is based on the notion of transition, a
total function
next : Pr×Event→ Pf in (Pr),
where Pr and Event denote the set of contractive global types and of events,

respectively.
If τ1 represents the current state of the protocol and the event e takes place,

then the protocol can move to τ2 i� next(τ1, e) = τ2, that we write as τ1 e τ2.
12By “path of a global type” we mean “path in the possibly in�nite tree corresponding to the

term that represents the global type”.

38

3 Preliminaries

The auxiliary function ϵ(_) speci�es the global types whose interpretation
contains the empty sequence ϵ . Intuitively, a global type τ s.t. ϵ(τ) holds
speci�es a protocol that is allowed to successfully terminate.

Let τ0 be a contractive global type. A run ρ for τ0 is a sequence τ0
e0 τ1

e1

...
en−1 τn

en τn+1
en+1

... such that (1) either the sequence is in�nite, or it
has �nite length k ≥ 0 and the last global type τk veri�es ϵ(τk); and (2) for all
τi , ei , and τi+1 in the sequence, τi

ei τi+1 holds.
We denote by A(ρ) the possibly empty or in�nite sequence of events e0e1...en ...

contained in ρ. The interpretation nτ0o of τ0 is the set {A(ρ)|ρ is a run for τ0}.
A contractive global type τ is deterministic if for e any possible run ρ of τ and
any possible τ ′ in ρ, if τ ′ e τ ′′, and τ ′ e τ ′′′, then nτ ′′o = nτ ′′′o.

39

4 Trace expressions

“Don’t use words too big for the subject.
Don’t say in�nitely when you mean very;

otherwise you’ll have no word left when you
want to talk about something really in�nite.”

- C.S. Lewis

In this chapter, we present trace expressions as a constrained global
types extension (Section 3.9) and we formally compare their ex-
pressive power with LTL, a formalism widely adopted in static and
runtime veri�cation (Section 3.6). We show that any LTL formula
can be translated into a trace expression which is equivalent from
the point of view of runtime veri�cation. Since trace expressions are
able to express and verify sets of traces that are not context-free, we
can derive that in the context of runtime veri�cation our formal-
ism is more expressive than LTL. Trace expressions are a compact
and expressive formalism, which can be employed to model com-
plex interaction protocols, and to generate monitors for the Jason
and JADE platforms, and can be generalized to support runtime
veri�cation of di�erent kinds of properties and systems.

The contents of this chapter are published in
(Ancona, Ferrando, and Mascardi, 2016)

40

4 Trace expressions

4.1 Introduction

As we mentioned in Section 3.5.2, there are several speci�cation formalisms
employed by RV; some of them are well-known formalisms that have been
originally introduced for other aims, as regular expressions, context free gram-
mars, and LTL, while others have been expressly devised for RV.

Trace expressions belong to this latter group; they are an evolution of
constrained global types (Section 3.9), which have been initially proposed for
RV of agent interactions in multiagent systems in 2013.

Trace expressions are an expressive formalism based on a set of operators
(including pre�xing, concatenation, shu�e, union, and intersection) to denote
�nite and in�nite traces of events. Their semantics is based on a labeled
transition system de�ned by a simple set of rewriting rules which directly
drive the behaviour of monitors generated from trace expressions.

In this chapter we introduce in detail the trace expressions formalism and
we formally compare it with LTL (Section 3.6), a formalism which is widely
used for RV, even though it was initially introduced for model checking.

When used for RV, the expressive power of LTL is reduced, because at
runtime only �nite traces can be checked, as already anticipated in Section 3.6.5.
For instance, the formula Fp (�nally p) which states that an event satisfying the
predicate p will eventually occur after a �nite trace of other occurred events,
can only be partially veri�ed at runtime, because no monitor is able to reject
an in�nite trace of events that do not satisfy p, which, of course, is not a model
for Fp.

To provide a formal account for this limitation, a three-valued semantics for
LTL, called LTL3 has been proposed (Bauer, Leucker, and Schallhart, 2009).

A third truth value “?” is introduced to specify that after a �nite trace of
events has been occurred, the outcome of a monitor can be inconclusive. For
instance, if we consider the formula Fp, and the event e which does not satisfy
p, then no monitor generated from Fp is able to decide whether Fp is satis�ed
or not after the trace eee .

In trace expressions this limitation of RV is modeled by the standard se-
mantics: if the semantics of a trace expression τ contains all �nite traces e ,
ee , eee , . . . , then it must also contain the in�nite trace e . . . e . . . because no
monitor generated from τ will be able to reject it. This corresponds to the
more formal claim stating that the semantics of any trace expression is a
complete metric space of traces, when the standard distance between traces is
considered.

As a consequence, when the standard semantics is considered, one can
conclude that LTL and trace expressions are not comparable: neither is more
expressive than the other. However, since the two formalisms are considered in
the context of RV, if the more appropriate three-valued semantics is considered,
then trace expressions are strictly more expressive than the LTL: every LTL
formula can be encoded into a trace expression with an equivalent three-valued
semantics, whereas the opposite property does not hold, since trace expressions
are also able to specify context-free and non context-free languages.

41

4 Trace expressions

4.2 The trace expression formalism

Trace expressions introduce a novelty with respect to constrained global types:
besides the union (a.k.a. choice), concatenation, and shu�e (a.k.a. fork) oper-
ators, trace expressions support intersection as well. Intersection replaces the
constrained shu�e operator (Ancona, Barbieri, and Mascardi, 2013; Ancona
et al., 2015a), an extension of the shu�e operator introduced for making con-
strained global types more expressive. Constrained shu�e imposes synchroniz-
ation constraints on the events inside a shu�e, thus making constrained global
types and their semantics more complex; furthermore, constrained shu�e is
not compositional: it cannot be expressed as an operation between sets of
event traces (that is, the mathematical entities denoted by trace expressions).
In contrast, the intersection operator has a simple, intuitive, and compositional
semantics (as suggested by the name itself) and yet is very expressive; for
instance, as shown in Section 4.3, it can be used for specifying non context-free
sets of event traces.

4.2.1 Events

In the following we denote by E a �xed universe of events. An event trace over
E is a possibly in�nite sequence of events in E. In the rest of the thesis the
meta-variables e , w , σ and u will range over the sets E, Eω , E∗, and Eω ∪ E∗,
respectively; juxtaposition e u denotes the trace where e is the �rst event, and
u is the rest of the trace. A trace expression over E denotes a set of event traces
over E.

As a possible example, we might have

E = {o.m | o object identity,m method name}

where the event o.m corresponds to an invocation of method named1 m on
the target object o. This is a typical example of set of events arising when
monitoring object-oriented systems (we will show an example later on).

4.2.2 Event types

Like constrained global types, also trace expressions are built on top of event
types (chosen from a set ET), rather than of single events; an event type
denotes a subset of E, and corresponds to a predicate of arity k ≥ 1, where the
�rst implicit argument corresponds to the event e under consideration; refer-
ring to the example where events are method invocations, we may introduce
the type safe(o) of all safe method invocations for a given object o, de�ned by
the predicate safe of arity 2 s.t. safe(e,o) holds i� e = o.isEmpty.

The �rst argument of the predicate is left implicit in the event type, and
we write e ∈ safe(o) to mean that safe(e,o) holds. Similarly, the set of events

1Here, for simplicity, an event does not include the signature of the method as it should be
the case for those languages supporting static overloading.

42

4 Trace expressions

speci�ed by an event type ϑ is denoted by nϑo; for instance, nsafe(o)o = {e |
e ∈ safe(o)}.

For generality, we leave unspeci�ed the formalism used for de�ning event
types; however, in practice we do not expect that much expressive power is
required. For instance, for all examples presented in this work a formalism
less powerful than regular expressions is su�cient.

4.2.3 Trace expressions

Similarly to a global type, whose syntax was described in Section 3.9, a trace
expression τ represents a set of possibly in�nite event traces, and is de�ned
on top of the following operators2, in which, only the intersection operator
is the new operator introduced with the trace expressions, all the others are
inherited from the global types:

• ϵ (empty trace), denoting the singleton set {ϵ} containing the empty event
trace ϵ .

• ϑ :τ (pre�x), denoting the set of all traces whose �rst event e matches the
event type ϑ (e ∈ ϑ), and the remaining part is a trace of τ .

• τ1·τ2 (concatenation), denoting the set of all traces obtained by concaten-
ating the traces of τ1 with those of τ2.

• τ1∧τ2 (intersection), denoting the intersection of the traces of τ1 and τ2.

• τ1∨τ2 (union), denoting the union of the traces of τ1 and τ2.

• τ1 |τ2 (shu�e), denoting the set obtained by shu�ing the traces in τ1 with
the traces in τ2.

To support recursion without introducing an explicit construct, trace expres-
sions are regular (a.k.a. rational or cyclic) terms, as well as the constrained
global types: they correspond to trees where nodes are either the leaf ϵ , or the
node (corresponding to the pre�x operator) ϑ with one child, or the nodes ·,
∧, ∨, and | all having two children. According to the standard de�nition of
rational trees, their depth is allowed to be in�nite, but the number of their
subtrees must be �nite. As originally proposed by Courcelle (Courcelle, 1983),
such regular trees can be modeled as partial functions from {0, 1}∗ to the set
of nodes (in our case {ϵ, ·,∧,∨, |} ∪ ET) satisfying certain conditions.

A regular term can be represented by a �nite set of syntactic equations,
as happens, for instance, in most modern Prolog implementations where
uni�cation supports cyclic terms.

As an example of non recursive trace expression, let E be the set {e1, . . . , e7},
and ϑi , i = 1, . . . , 7, be the event types such that e ∈ ϑi i� e = ei (that is,
nϑio = {ei }); then the trace expression

TE1 = ((ϑ1:ϵ |ϑ2:ϵ)∨(ϑ3:ϵ |ϑ4:ϵ))·(ϑ5:ϑ6:ϵ |ϑ7:ϵ)
2Binary operators associate from left, and are listed in decreasing order of precedence, that is,

the �rst operator has the highest precedence.

43

4 Trace expressions

denotes the following set of event traces:{
e1e2e5e6e7, e1e2e5e7e6, e1e2e7e5e6, e2e1e5e6e7, e2e1e5e7e6, e2e1e7e5e6,

e3e4e5e6e7, e3e4e5e7e6, e3e4e7e5e6, e4e3e5e6e7, e4e3e5e7e6, e4e3e7e5e6

}
As an example of recursive trace expression, if ϑi denotes the same event type
de�ned above for i = 1, . . . , 7, and nϑo = {e4, e5, e6, e7}, nϑ ′o = {e1, e2, e6, e7},
and nϑ ′′o = {e1, e2, e3, e4}, then the trace expression

TE2 = (E |ϑ1:ϑ2:ϑ3:ϵ)∧(E ′ |ϑ3:ϑ4:ϑ5:ϵ)∧(E ′′ |ϑ5:ϑ6:ϑ7:ϵ)
E = ϵ∨ϑ :E E ′ = ϵ∨ϑ ′:E ′ E ′′ = ϵ∨ϑ ′′:E ′′

denotes the set {e1e2e3e4e5e6e7}.
Finally, the recursive trace expressions T1 = (ϵ∨ϑ1:T1)·T2, T2 = (ϵ∨ϑ2:T2)

represent the in�nite but regular terms (ϵ∨ϑ1:(ϵ∨ϑ1: . . .))·(ϵ∨ϑ2:(ϵ∨ϑ2: . . .))
and (ϵ∨(ϑ2:(ϵ∨(ϑ2: . . .)))), respectively.

In the rest of the work we will limit our investigation to contractive (a.k.a.
guarded) trace expressions (as in Section 3.9 in the case of global types). In
Section 3.9 we introduced contractivenes in an informal way. The formal
de�nition is the following:

De�nition 2. A trace expression τ is contractive if all its in�nite paths contain
the pre�x operator.

In contractive trace expressions all recursive subexpressions must be guarded
by the pre�x operator; for instance, the trace expression de�ned by T1 =

(ϵ∨(ϑ :T1)) is contractive: its in�nite path contains in�nite occurrences of ∨,
but also of the : operator; conversely, the trace expression T2 = ϑ :T2∨T2 is not
contractive.

Trivially, every trace expression corresponding to a �nite tree (that is, a non
cyclic term) is contractive.

For all contractive trace expressions, any path from their root must always
reach either a ϵ or a : node in a �nite number of steps. Since in this work all
de�nitions over trace expressions treat ϑ :τ as a base case (that is, the de�nition
is not propagated to the subexpression τ), restricting trace expressions to
contractive ones has the advantage that most of the de�nitions and proofs
requires induction, rather than coinduction, despite trace expressions can be
cyclic. As a consequence, the implementation of trace expressions becomes
considerably simpler. For this reason, in the rest of the thesis we will only
consider contractive trace expressions.

As in constrained global types, which use the next transition function to
move from a protocol state to another one, also in trace expressions we have a
transition function (corresponding to the trace expressions semantics) which
can be speci�ed by the transition relation δ ⊆ T×E×T , whereT and E denote
the set of trace expressions and of events, respectively. As it is customary, we
write τ1

e
→ τ2 to mean (τ1, e,τ2) ∈ δ .

next(τ0, e) = {τ1,τ2, ...,τn} ⇐⇒ ∀1≤i≤n .(τ0, e,τi) ∈ δ

The set generated from next(τ0, e) can be in�nite. If the trace expression τ1
speci�es the current valid state of the system, then an event e is considered

44

4 Trace expressions

(pre�x)
ϑ :τ e
→ τ

e ∈ϑ (or-l)
τ1

e
→ τ ′1

τ1∨τ2
e
→ τ ′1

(or-r)
τ2

e
→ τ ′2

τ1∨τ2
e
→ τ ′2

(and)
τ1

e
→ τ ′1 τ2

e
→ τ ′2

τ1∧τ2
e
→ τ ′1∧τ

′
2

(shu�e-l)
τ1

e
→ τ ′1

τ1 |τ2
e
→ τ ′1 |τ2

(shu�e-r)
τ2

e
→ τ ′2

τ1 |τ2
e
→ τ1 |τ ′2

(cat-l)
τ1

e
→ τ ′1

τ1·τ2
e
→ τ ′1 ·τ2

(cat-r)
τ2

e
→ τ ′2

τ1·τ2
e
→ τ ′2

ε (τ1)

Figure 4.1 . Operational semantics of trace expressions

(ε -empty)
ε(ϵ)

(ε -or-l)
ε(τ1)

ε(τ1∨τ2)
(ε -or-r)

ε(τ2)

ε(τ1∨τ2)
(ε -shu�e)

ε(τ1) ε(τ2)

ε(τ1 |τ2)

(ε -cat)
ε(τ1) ε(τ2)

ε(τ1·τ2)
(ε -and)

ε(τ1) ε(τ2)

ε(τ1∧τ2)

Figure 4.2 . Empty trace containment

valid i� there exists a transition τ1
e
→ τ2; in such a case, τ2 will specify the

next valid state of the system after event e . Otherwise, the event e is not
considered to be valid in the current state represented by τ1. Figure 4.1 de�nes
the inductive rules for the transition function.

While the transition relation δ with its corresponding rules in Figure 4.1
de�nes the non empty traces of a trace expression, the predicate ε(_), induct-
ively de�ned by the rules in Figure 4.2, de�nes the trace expressions that
contain the empty trace ϵ . If ε(τ) holds, then the empty trace is a valid trace
for τ .

Rule (pre�x) states that valid traces of ϑ :τ can only start with an event e of
type ϑ (side condition e ∈ ϑ), and continue with traces in τ .

Rules (or-l) and (or-r) state that the only valid traces of τ1∨τ2 have shape e u,
where either e u is valid for τ1 (rule (or-l)), or e u is valid for τ2 (rule (or-r)).

Rule (and) states that the only valid traces of τ1∧τ2 have shape e u, where
e u is valid for both τ1 and τ2.

Rules (shu�e-l) and (shu�e-r) state that the only valid traces of τ1 |τ2 have
shape e u, where either e u ′1 and u2 are valid traces for τ1 and τ2, respectively,
and u can be obtained as the shu�e of u ′1 with u2 (rule (shu�e-l)), or u1 and
e u ′2 are valid traces for τ1 and τ2, respectively, and u can be obtained as the
shu�e of u1 with u ′2 (rule (shu�e-r)).

Rules (cat-l) and (cat-r) state that the only valid traces of τ1·τ2 have shape
e u, where either e u ′1 and u2 are valid traces for τ1 and τ2, respectively, and u

can be obtained as the concatenation of u ′1 to u2 (rule (cat-l)), or ϵ is a valid
trace for τ1 (side condition ε(τ1)) and e u is a valid trace for τ2 (rule (cat-r)).

For what concerns Figure 4.2, rules (ε-shu�e), (ε-cat) and (ε-and) require
the empty trace to be contained in both subexpressions τ1 and τ2, whereas for
the union operator it su�ces that the empty trace is contained in either τ1

45

4 Trace expressions

(rule (ε-or-l)) or τ2 (rule (ε-or-r)). The pre�x operator can never build sets of
traces containing the empty trace, whereas ϵ contains just the empty trace
(rule (ε-empty)).

The set of traces nτo denoted by a trace expression τ is de�ned in terms of
the transition relation δ , and the predicate ε(_). Since nτo may contain in�nite
traces, the de�nition of nτo is coinductive.

De�nition 3. For all possibly in�nite event traces u and trace expressions τ ,
u ∈ nτo is coinductively de�ned as follows:

• either u = ϵ and ε(τ) holds,

• or u = e u ′, and there exists τ ′ s.t. τ
e
→ τ ′ and u ′ ∈ nτ ′o hold.

In the following we will need to consider the re�exive and transitive closure
of the transition relation: if σ is a �nite (possibly empty) event trace, then the
relation τ σ

→ τ ′ is inductively de�ned as follows: τ σ
→ τ ′ holds i�

• σ = ϵ , and τ ′ = τ ;

• or σ = e σ ′, and there exists τ ′′ s.t. τ e
→ τ ′′, and τ ′′ σ

′

→ τ ′.

Let us consider again the previous examples of trace expressions:

TE1 = ((ϑ1:ϵ |ϑ2:ϵ)∨(ϑ3:ϵ |ϑ4:ϵ))·(ϑ5:ϑ6:ϵ |ϑ7:ϵ)
TE2 = (E |ϑ1:ϑ2:ϑ3:ϵ)∧(E ′ |ϑ3:ϑ4:ϑ5:ϵ)∧(E ′′ |ϑ5:ϑ6:ϑ7:ϵ)
E = ϵ∨ϑ :E E ′ = ϵ∨ϑ ′:E ′ E ′′ = ϵ∨ϑ ′′:E ′′
∀ i ∈ {1..7} nϑio = {ei } nϑo = {e4, e5, e6, e7}
nϑ ′o = {e1, e2, e6, e7} nϑ ′′o = {e1, e2, e3, e4}

We show that there exist τ1, τ2 s.t. TE1
σ1
→ τ1, with σ1 = e1e2e5e6e7, ε(τ1),

TE2
σ2
→ τ2, with σ2 = e1e2e3e4e5e6e7, and ε(τ2).

For TE1
σ1
→ τ1 we have ϑ1:ϵ |ϑ2:ϵ

e1
→ ϵ |ϑ2:ϵ

e2
→ ϵ |ϵ , hence

(ϑ1:ϵ |ϑ2:ϵ)∨(ϑ3:ϵ |ϑ4:ϵ)
e1e2
→ ϵ |ϵ , and TE1

e1e2
→ (ϵ |ϵ)·(ϑ5:ϑ6:ϵ |ϑ7:ϵ). Furthermore,

ϑ5:ϑ6:ϵ |ϑ7:ϵ
e5
→ ϑ6:ϵ |ϑ7:ϵ

e6
→ ϵ |ϑ7:ϵ

e7
→ ϵ |ϵ , hence ϑ5:ϑ6:ϵ |ϑ7:ϵ

e5e6e7
→ ϵ |ϵ ,

and, because ε(ϵ |ϵ), we can conclude (ϵ |ϵ)·(ϑ5:ϑ6:ϵ |ϑ7:ϵ)
e5e6e7
→ ϵ |ϵ , hence,

TE1
e1e2e5e6e7
→ ϵ |ϵ .

For TE2
σ2
→ τ2 we haveE |ϑ1:ϑ2:ϑ3:ϵ

e1e2e3
→ E |ϵ

e4e5e6e7
→ E |ϵ , andE ′ |ϑ3:ϑ4:ϑ5:ϵ

e1e2
→

E ′ |ϑ3:ϑ4:ϑ5:ϵ
e3e4e5
→ E ′ |ϵ

e6e7
→ E ′ |ϵ , and, �nally, E ′′ |ϑ5:ϑ6:ϑ7:ϵ

e1e2e3e4
→

E ′′ |ϑ5:ϑ6:ϑ7:ϵ
e5e6e7
→ E ′′ |ϵ . Therefore TE2

e1e2e3e4e5e6e7
→ (E |ϵ)∧(E ′ |ϵ)∧(E ′′ |ϵ) and

ε(E |ϵ), ε(E ′ |ϵ), and ε(E ′′ |ϵ), hence ε((E |ϵ)∧(E ′ |ϵ)∧(E ′′ |ϵ)).

Since the semantics of trace expressions is coinductive, they can specify non
terminating behaviour; for instance, the trace expression de�ned by T = ϑ1:T
denotes the set with just the in�nite trace e1 e1 . . . e1 . . . containing in�nite
occurrences of e1; had we considered an inductive semantics, T would have
denoted the empty set. For the very same reason, the trace expression de�ned
by T ′ = ϵ∨ϑ1:T ′ denotes the set containing all �nite traces of the event e1,

46

4 Trace expressions

but also the in�nite trace e1 e1 . . . e1 From the point of view of RV, the
only di�erence between the two types is that for T ′ the monitored system is
allowed to halt at any time, whereas for T the system can never stop.

Since at runtime it is not possible to check that a given monitored system
will always eventually stop, trace expressions cannot denote sets of traces
which are not complete metric spaces, with the standard distance between
traces: d(u1,u2) = 2−n , where n denotes the smallest index (starting from 0) at
which the two traces are di�erent; by convention, if the two traces are equal,
than n = ∞, and 2−n = 0. For instance, if the semantics of a trace expression τ
contains traces of arbitrarily large length of the event e1, then it also contains
the in�nite trace e1 e1 . . . e1 . . .; indeed, the monitor associated with τ will not
be able to reject it.

Such a limitation is independent of the used formalism, but it is intimately
related to RV; as pointed out in Section 4.5, similar issues arise when the LTL
is used for RV: its semantics has to be revisited to take into account the fact
that at runtime only �nite traces can be monitored and checked.

4.2.4 Deterministic trace expressions

As anticipated in in Section 3.9, constrained global types can be either de-
terministic or nondeterministic. This also applies to trace expressions, indeed,
there are trace expressions τ for which the problem of word recognition is less
e�cient because of non determinism.

In the previous section, we have presented the syntax of trace expressions as
a constrained global types syntax evolution highlighting the main di�erences
among the operators; in particular, trace expressions have the same constrained
global types operators with in addition the intersection operator.

Non determinism originates from the union, shu�e, and concatenation
operators, because for each of them two possibly overlapping transition rules
are de�ned; consequently, the new intersection operator does not in�uence the
trace expressions determinism.

Let us consider the trace expression τ = (ϑ1:ϑ2:ϵ)∨(ϑ1:ϑ3:ϵ), where nϑio =
{ei } for i ∈ {1..3}. Both transitions τ e1

→ ϑ2:ϵ and τ e1
→ ϑ3:ϵ are valid, but

nϑ2:ϵo , nϑ3:ϵo; therefore, to correctly accept the trace e1e3, both rules have
to be applied simultaneously, and the set of trace expressions {ϑ2:ϵ,ϑ3:ϵ} has
to be considered, as it is done for non deterministic automaton.

Similarly, for the trace expression τ ′ = (ϑ1:ϑ2:ϵ)|(ϑ1:ϑ3:ϵ), both transitions
τ ′

e1
→ (ϑ2:ϵ)|(ϑ1:ϑ3:ϵ) andτ ′ e1

→ (ϑ1:ϑ2:ϵ)|(ϑ3:ϵ) are valid, but n(ϑ2:ϵ)|(ϑ1:ϑ3:ϵ)o ,

n(ϑ1:ϑ2:ϵ)|(ϑ3:ϵ)o.
Finally, for the trace expression τ ′′ = (ϵ∨ϑ1:ϑ2:ϵ)·(ϑ1:ϵ) both transitions

τ ′′
e1
→ (ϑ2:ϵ)·(ϑ1:ϵ) and τ ′′ e1

→ ϵ are valid, but n(ϑ2:ϵ)·(ϑ1:ϵ)o , nϵo.
In the rest of this work we will focus on deterministic trace expressions:

indeed, the problem of word recognition is simpler and more e�cient in the
deterministic case.

47

4 Trace expressions

Deterministic trace expressions are de�ned as follows.

De�nition 4. Let τ be a trace expression; τ is deterministic if for all �nite event
traces σ , if τ

σ
→ τ ′ and τ

σ
→ τ ′′ are valid, then nτ ′o = nτ ′′o.

The trace expressions τ , τ ′, and τ ′′, as de�ned above, are not deterministic,
while the respectively equivalent trace expressions ϑ1:(ϑ2:ϵ∨ϑ3:ϵ),
ϑ1:(((ϑ2:ϵ)|(ϑ1:ϑ3:ϵ))∨((ϑ1:ϑ2:ϵ)|(ϑ3:ϵ))), and ϑ1:(ϵ∨ϑ2:ϑ1:ϵ) are deterministic.

4.2.5 Expansive trace expressions

The trace expressions expressivity is due to the presence of expansive terms.

De�nition 5. A trace expression τ is expansive i� τ = τ1·τ2 and τ1 is a cyclic
term containing τ ; or τ = τ1 |τ2 and either τ1 or τ2 is a cyclic term containing τ ;
or τ = τ1∧τ2 and either τ1 or τ2 is a cyclic term containing τ ; or it contains a
subtrace that is expansive.

Expansive subtraces allow the trace expression formalism to recognize more
than context-free languages. Given a trace expression τ , exp(τ) is true if τ is
expansive.

Example 1. An example of an expansive concatenation term is:
nϑ1o = {e1} nϑ2o = {e2}
τ = τ1·τ2 τ1 = (ϑ1:τ)∨ϵ τ2 = ϑ2:ϵ
τ

e1
→ (τ1·τ2)·τ2

e1
→ ((τ1·τ2)·τ2)·τ2

e1
→ (((τ1·τ2)·τ2)·τ2)·τ2

e1
→ ...

Example 2. An example of an expansive shu�e term is:
nϑ1o = {e1} nϑ2o = {e2}
τ = τ1 |τ2 τ1 = ϑ1:ϵ τ2 = ϑ2:τ
τ

e2
→ τ1 |(τ1 |τ2)

e2
→ τ1 |(τ1 |(τ1 |τ2))

e2
→ τ1 |(τ1 |(τ1 |(τ1 |τ2)))

e2
→ ...

Non-expansive trace expressions are de�ned as follows.

De�nition 6. Let τ be a trace expression; τ is non-expansive if it does not
contain neither expansive concatenations nor expansive shu�es terms.

4.2.6 Derived operators

We �rst introduce some useful operators that will be used in the rest of the
thesis.

constants. The constants 1 and 0 denote the set of all possible traces over
E and the empty set, respectively. Constant 1 is equivalent to the expression
T = ϵ∨any:T , where any is the event type s.t. nanyo = E; constant 0 is
equivalent to the expression none:ϵ , where none is the event type s.t. nnoneo =
∅.

48

4 Trace expressions

filter operator. The �lter operator is useful for making trace expres-
sions more compact and readable. The expression ϑ�τ denotes the set of
all traces contained in τ , when deprived of all events that do not match ϑ .
Assuming that event types are closed by complementation, the expression
above is a convenient syntactic shortcut for T |τ , where T = ϵ∨ϑ :T , and ϑ is
the complement event type of ϑ , that is, nϑo = E \ nϑo.

The corresponding rules for the transition relation and the auxiliary function
ε(_) can be easily derived:

(cond-t)
τ

e
→ τ ′

ϑ�τ
e
→ ϑ�τ ′

e ∈ϑ (cond-f)
ϑ�τ

e
→ ϑ�τ

e<ϑ (ε -cond)
ε(τ)

ε(ϑ�τ)

4.3 Examples of speci�cations with trace expressions

In this section we provide some examples to show the expressive power of
trace expressions. Unless speci�ed otherwise, in the rest of the thesis we will
consider singleton event types, that are, event types representing a single event;
with abuse of notation, we will abbreviate events with their corresponding
singleton event types.

4.3.1 Ping Pong Protocol

We start the examples with a simple ping-pong protocol.
Let ping and pong denote the event types s.t.

npingo = {send(alice, bob, _)}
npongo = {send(bob, alice, _)}

The following trace expression speci�es the protocol where at each step
alice sends a message to bob, and then bob replies to it, and the number of
steps is arbitrary (even in�nite) but greater than 0.

PingPong = ping:pong:Forever
Forever = ϵ∨ping:pong:Forever

The protocol speci�ed by PingPong is allowed to terminate after one or
more steps; the following variation speci�es a ping-pong protocol which is
not allowed to terminate:

PingPongForever = ping:pong:PingPongForever

In terms of monitoring, the only di�erence between PingPong and
PingPongForever consists in the fact that in the latter case an anomaly of
the system is reported if no event is detected after a prede�ned timeout has
expired.

49

4 Trace expressions

4.3.1.1 Stack objects

We expand the example3 where events correspond to method invocations on
objects; besides the already introduced event type safe(o) s.t. e ∈ safe(o) i�
e = o.isEmpty, we de�ne the following other event types:

npop(o)o = {o.pop}, ntop(o)o = {o.top}, npush(o)o = {o.push};
nstack(o)o = {o.pop,o.top,o.push,o.isEmpty};

nunsafe(o)o = {o.pop,o.top,o.push}.
Our purpose is to specify through a trace expression Stack all safe traces of

method invocations on a stack object o which we assume to be initially empty.
Safety requires that methods top and pop can never be invoked on o when o

represents the empty stack.
More in details, a trace of method invocations on a given object having

identity o is correct i� any �nite pre�x does not contain more pop(o) event
types than push(o), and the event type top(o) can appear only if the number
of pop(o) event types is strictly less than the number of push(o) event types
occurring before top(o).

The trace expression Stack is de�ned as follows:

Stack = Any∧unsafe(o)�Unsafe
Unsafe = ϵ∨(push(o):(Unsafe |(Tops · (pop(o):ϵ∨ϵ))))

Any = ϵ∨stack(o):Any
Tops = ϵ∨top(o):Tops

A correct stack trace is speci�ed by Stack which is the intersection of
Any and unsafe(o)�Unsafe; Any speci�es any possible trace of method invoc-
ations on stack objects, whereas if an event has type unsafe(o), then it has
to verify the trace expression Unsafe, which requires that a push event must
precede a possible empty trace of top events, which, in turn, must precede an
optional event pop; the expression is recursively shu�ed with itself, since any
push event can be safely shu�ed with a top or a pop event.

The speci�cation is deterministic.
To make an example, we can consider Stack σ

→ τ with

σ = push(o) push(o)

τ = Any∧unsafe(o)�(Unsafe |Tops·((pop(o):ϵ)∨ϵ)|Tops·((pop(o):ϵ)∨ϵ))
We may observe that τ e

→ τ1 and τ e
→ τ2, with4

e = pop(o)
τ1 = Any∧unsafe(o)�(Unsafe |ϵ |Tops·((pop(o):ϵ)∨ϵ))
τ2 = Any∧unsafe(o)�(Unsafe |Tops·((pop(o):ϵ)∨ϵ)|ϵ)

but nτ1o = nτ2o.
3The example we considered at the beginning of this chapter.
4For e�ciency reasons, our implementation exploits simpli�cation opportunities after each

transition step, therefore in practice for this example the two transitions would lead to the
same expression.

50

4 Trace expressions

4.3.2 Alternating Bit Protocol

A more complex example concerning interactions is the alternating bit protocol
(ABP), as de�ned by Deniélou and Yoshida (Deniélou and Yoshida, 2012), where
two parties, Alice and Bob, are involved, and four di�erent types of events can
occur: Alice sends a �rst kind of message to Bob (event type msg1), Alice sends
a second kind of message to Bob (event type msg2), Bob replies to Alice with
an acknowledge to the �rst kind of message (event type ack1), Bob replies to
Alice with an acknowledge to the second kind of message (event type ack2).
The protocol has to satisfy the following constraints for all event occurrences:

• The n-th occurrence of the event of type msg1 must precede the n-th
occurrence of the event of type msg2 , which, in turn, must precede the
(n + 1)-th occurrence of the event of type msg1.

• The n-th occurrence of the event of type msg1 must precede the n-th
occurrence of the event of type ack1, which, in turn, must precede the
(n + 1)-th occurrence of the event of type msg1.

• The n-th occurrence of the event of type msg2 must precede the n-th
occurrence of the event of type ack2 , which, in turn, must precede the
(n + 1)-th occurrence of the event of type msg2 .

The protocol can be speci�ed by the following trace expression (starting
from variable AltBit1):
AltBit1 = msg1:M2 AltBit2 = msg2 : M1

M1 = msg1:A2∨ack2 :AltBit1 M2 = msg2 :A1∨ack1:AltBit2
A1 = ack1:M1∨ack2 :ack1:AltBit1 A2 = ack2 :M2∨ack1:ack2 :AltBit2

In this case the pre�x and union operators are su�cient for specifying the
correct behaviour of the system, however, the corresponding trace expression
is not very readable. More importantly, if only the pre�x and union operators
are employed, the size of the expressions grows exponentially with the number
of di�erent involved event types.

This problem can be avoided by the use of the intersection and �lter operat-
ors.

Letmsg_ack(i), i ∈ {1..2}, andmsg denote the event types s.t. nmsg_ack(i)o =
nmsgio ∪ nackio, i ∈ {1..2}, and nmsgo = nmsg1o ∪ nmsg2o. Then the ABP
can be speci�ed by the following deterministic trace expression:

AltBit = (msg�MM)∧(msg_ack(1)�MA1)∧(msg_ack(2)�MA2)

MM = msg1:msg2 :MM
MA1 = msg1:ack1:MA1
MA2 = msg2 :ack2 :MA2

The three trace expressions de�ned by MM , MA1, and MA2 correspond to
the three constraints informally stated above. The main trace expression AltBit
can be easily read as follows: if an event has type msg1 or msg2 , then it must
verify MM , and if an event has type msg1 or ack1, then it must verify MA1, and
if an event has type msg2 or ack2 , then it must verify MA2.

51

4 Trace expressions

The trace expression can be easily generalized to k di�erent kinds of mes-
sages (with k ≥ 2), with the size of the expression growing linearly with the
number of di�erent involved event types. For instance, for k = 3 we have the
following trace expression:

AltBit = (msg�MM)∧(msg_ack(1)�MA1)∧

(msg_ack(2)�MA2)∧(msg_ack(3)�MA3)

MM = msg1:msg2 :msg3:MM MA1 = msg1:ack1:MA1
MA2 = msg2 :ack2 :MA2 MA3 = msg3:ack3:MA2

4.3.3 Non context free languages

Trace expressions allow the speci�cation of non context free languages; let
us consider for instance the typical example of non context free language
{anbncn | n ≥ 0}. This language can be speci�ed by the following trace
expression (de�ned by T)

T = (a_or_b�AB)∧(b_or_c�BC)

AB = ϵ∨(a:(AB·(b:ϵ)))
BC = ϵ∨(b:(BC·(c:ϵ)))

where nao = {a}, nbo = {b}, nco = {c}, na_or_bo = {a,b}, and nb_or_co =
{b, c}.

Assuming the universe of events E = {a,b, c}, the expression a_or_b�AB
denotes all traces of events over E that, when restricted to �nite length5 and
to events a or b, correspond to the sequence anbn for some n ∈ N; similarly,
the expression b_or_c�BC denotes all traces of events over E that, when
restricted to �nite length and to events b or c , correspond to the sequence
bncn for some n ∈ N. Therefore the �nite traces of expression T , which is
the intersection of a_or_b�AB and b_or_c�BC, are the non-context free
language {anbncn | n ≥ 0}.

AlthoughT is deterministic, it has the drawback that non correct traces can
be detected with a certain latency. For instance the transition T

aabc
→ T ′ holds,

with T ′ = (a_or_b�(b:ϵ))∧(b_or_c�ϵ), and clearly aabc is not a valid pre�x
for the language; however, nT ′o = ∅, and T ′ is not able to accept any further
event, that is, recognition fails, independently from the next event.

To avoid this problem, the following equivalent (assuming that E = {a,b, c})
deterministic trace expression can be employed:

T2 = (AB·C)∧(b_or_c�BC) AB = ϵ∨(a:(AB·(b:ϵ)))
BC = ϵ∨(b:(BC·(c:ϵ))) C = ϵ∨c:C

In this case, AB·C forces events of type c to occur only after all required events
of type b have been already occurred. In this case there is noT ′′2 s.t.T2

aabc
→ T ′′2

5Recall that for a comparison with context-free languages we need to disregard in�nite
traces; for instance, a_or_b�AB and b_or_c�BC contain also the in�nite traces aω and
bω , respectively.

52

4 Trace expressions

holds; indeed, T2
aab
→ T ′2 with

T ′2 = ((b:ϵ)·(ϵ∨(c:C)))∧(b_or_c�(BC·(c:ϵ))),

and there exists no T ′′2 s.t. T ′2
c
→ T ′′2 , since the only possible transition from T ′2

is T ′2
b
→ T ′′2 , with

T ′′2 = (ϵ∨(c:C))∧(b_or_c�((ϵ∨(b:BC·(c:ϵ)))·((c:ϵ)·(c:ϵ)))),

and nT ′′2 o = {cc}.

4.4 Trace expressions monitoring

One possible way to achieve the RV of a system is using one (or more) mon-
itor(s) generated from a formal speci�cation (that is the property we want
to verify, for instance a LTL property (Pnueli, 1977), or in our case a trace
expression).

Monitoring can be classi�ed with respect to three main aspects:

1. When the monitoring is executed.
• online, the monitor checks the executions incrementally at runtime;

• o�ine, the monitor checks recorded executions (for instance log
�les).

2. How the monitoring is implemented (Falcone, 2010).
• inline, the monitor is inserted within the monitored program;

• outline, the monitor runs in a thread or process di�erent from the
monitored program.

3. Which kind of errors the monitor arises (d’Amorim and Rosu, 2005).
• precise, the monitor has observed an error in the execution trace

analyzed;

• predictive, the monitor indicates errors that have not occurred in
the observed execution trace but could possibly occur in other
executions of the program.

A possible way to specify the monitor behavior is through the set of all
correct traces (�nite or in�nite sequences of events) which can be generated
during the system execution6. This set of traces can be de�ned using di�erent
formalisms. In our work we adopt trace expressions (Figure 4.3).

As it will be clearer in the rest of the thesis, with respect to the three main
aspects reported above, our RV approach can be classi�ed as: online/o�ine7,
outline, precise.

6For instance, the system might be a multiagent system and the events of interest might be
messages exchanged among agents which must respect some interaction protocol property,
or an object oriented systems, where events subject to monitoring might be method calls.

7We can analyze both the execution traces at runtime and the recorded traces (log �les).

53

4 Trace expressions

Systemm

event

yes/no
formal

specification

τ

Figure 4.3 . An abstract view of how to build a monitor.

In Figure 4.3, we reported an abstraction of how we generate the monitors
starting from a formal speci�cation, in particular a trace expression in our
case.

Once we have de�ned the property we want to verify using the trace expres-
sion formalism, we can automatically build a monitor as a very naive entity –
a sni�er – which, each time it observes an event, queries our trace expression
in order to check if it is a valid one. Obviously, in order to query the trace
expression, the monitor must be able to observe the events generated by the
veri�ed system. This task can be more or less easy to achieve, depending on
which kind of system we are interested in verifying. Generally, we suppose a
way to connect the system and the monitor already exists, or can be developed.
In the context of MAS, for instance, if we use JADE, we have already available
one – or more – sni�er agents able to intercept the events generated by the
agents communication. In such scenario, the implementation of a monitor is
extremely easy because it is enough to extend the already existing sni�er. If,
for instance, we are interested in verifying a system which does not support
any kind of events observer by default, we should be forced to develop it from
scratch.

The trace expression semantics has been implemented inside SWI-Prolog8,
a comprehensive free Prolog environment. SWI-Prolog has been chosen par-
ticularly because it supports the connection to the most famous and used
programming languages (such as Java, making the integration in Jason and
JADE very easy), and because it supports coinduction9 (Milner and Tofte,
1991) through the prede�ned coinduction library10 (extremely useful since trace
expression can be cyclic terms). In Chapter 14 we show how we have implemen-
ted the runtime veri�cation process inside the JADE platform. Anyway, once
a bridge between the monitor and the system exists, the runtime veri�cation
process can be summarized as follows.

Following the trace expression semantics (Section 4.2.3), we use the δ trans-
ition function for going from the current state – the trace expression – to the
next one using the observed event. If, the event generated by the system is not a
valid one, given the trace expression representing the current state, we cannot
generate a new state – a new trace expression – using such event. When that

8http://swi-prolog.org/
9For further historical details see Section 4.3 of Sangiorgi’s paper (Sangiorgi, 2009).

10http://www.swi-prolog.org/pldoc/doc/_SWI_/library/coinduction.pl

54

http://swi-prolog.org/
http://www.swi-prolog.org/pldoc/doc/_SWI_/library/coinduction.pl

4 Trace expressions

happens, we have found an error – or better, an unexpected behaviour – and
what will be done after to handle it is totally dependent on the speci�c domain
(like stopping the execution of the system or trying to solve the problem).

4.5 Comparison with LTL

In this section we formally prove that trace expressions are more expressive
than the LTL, when both formalisms are used for RV. To this purpose we
consider the LTL3 semantics, an adaptation of the standard semantics of LTL
formulas expressly introduced to take into account the limitations of RV due
to its inability to check in�nite traces. Despite there are LTL formulas which
do not have an equivalent trace expression according to the standard LTL
semantics, when LTL3 is considered such a di�erence is no longer exhibited:
for any LTL formula φ it is possible to build a contractive and deterministic
trace expression τ such that the monitors generated by φ and τ , respectively,
are behaviorally equivalent.

4.5.1 Comparing trace expressions and LTL

We have shown in Section 3.6 that LTL formulas aspUq cannot be fully veri�ed
at runtime, therefore a three-valued semantics LTL3 has been introduced. To
be able to compare LTL formulas with trace expressions, the same three-valued
semantics is considered for trace expressions as well.

Given a �nite trace σ ∈ Σ∗ of length |σ | = n, a continuation of σ is an �nite
or in�nite trace u ∈ Σ∗ ∪ Σω s.t. for all 0 ≤ i < n u(i) = σ (i).

The three-valued semantics of a trace expression τ is de�ned as follows:

σ ∈ nτo3 =

> i� u ∈ nτo for all continuations u of σ
⊥ i� u < nτo for all continuations u of σ
? i� neither of the two conditions above holds

Let us consider again the formula φ = pUq; if we assume that each atomic
predicate in AP has a corresponding event type denoted in the same way,
then the closest trace expression τ into which φ can be translated is de�ned
by T = p:T∨q:1, where 1 is the derivable constant introduced in Section 4.3
denoting all possible traces. If we consider the standard semantics we have
that, since {p} is an event that satis�es p, {p}ω ∈ nτo, but {p}ω 2 φ. However,
when considering the three-valued semantics we have that for allv ∈ {>,⊥, ?}
and σ ∈ Σ∗, σ � φ = v i� σ ∈ nτo3 = v . In particular, for all n ≥ 0, {p}n � φ =?
and {p}n ∈ nτo3 =?.

To translate an LTL formula φ into a trace expression τ s.t. the three-valued
semantics is preserved, we exploit the result presented in Section 3. First, φ is
translated into an equivalent FSMMφ , thenMφ is translated into an equival-
ent contractive and deterministic trace expression τφ . The latter translation is
de�ned as follows:

• if the initial state returns >, then φ is a tautology, and the corresponding
trace expression is the constant 1;

55

4 Trace expressions

• if the initial state returns ⊥, then φ is a unsatis�able, and the correspond-
ing trace expression is the constant 0;

• if the initial state returns ?, then the corresponding trace expression is
de�ned by a �nite set of equations X1 = τ1, . . . ,Xn = τn , where n is the
number of states inMφ that return ?, each of such states is associated
with a distinct variable Xi , X1 is the variable associated with the initial
state which corresponds to the whole trace expression τφ .

The expressions τi are de�ned as follows: let k be the number of states
q1, . . . ,qk that do not return ⊥ for which there exists an incoming edge,
labeled with the element ai ∈ 2AP , from the node associated with Xi ; we
know that k > 0, because the node associated with Xi returns ?. Then
τi = a1:f (q1)∨ . . .∨ak :f (qk), where f (q) is de�ned as follows: if q returns
>, then f (q) = 1, otherwise (that is, q returns ?), f (q) = Xq (that is, the
variable uniquely associated with q is returned).

Since all variables in the expressions τ1, . . . ,τn are guarded by the pre�x
operator, τφ is contractive; furthermore, it is deterministic because Mφ is
deterministic.

Theorem 1. LetMφ be the FSM equivalent to φ generated by the procedure
described in Chapter 3. Then, the trace expression τφ generated from Mφ as
speci�ed in this section preserves the semantics of Mφ : for all σ ∈ Σ∗ Mφ

accepts σ with output v ∈ {>,⊥, ?} i� σ ∈ nτφo3 = v .
Proof. The proof proceeds by induction on the length of σ .
Base case: σ = ϵ .
The cases where the initial state of the FSM returns > or ⊥ are immediate to
be proved (in the case of ⊥ the monitoring ends). The proof when the initial
state returns ? is based on the fact that by construction nτφo , ∅ and there
always exists a trace u s.t. u < nτφo, therefore ϵ ∈ nτφo3 =?. �

Inductive step: σ = σ ′e .
Inductive hypothesis: Mφ accepts σ ′ with output v ∈ {>,⊥, ?} and σ ′ ∈

nτφo3 = v .
Without loss of generality, we consider that the monitoring ends immediately
when an unexpected event occurs; that is when the FSM visits a⊥ node and the
trace expression can not move to another state consuming the occurred event.
Consequently,Mφ accepts σ ′ with output v ∈ {>, ?} and σ ′ ∈ nτφo3 = v .
Analyzing all the possible cases:

• if v = >, for the inductive hypothesis, the current state in FSM returns >
and the corresponding trace expression is the constant 1 (by construction);
consuming the event e both remain in a state which accepts all incoming
events.

• ifv =?, for the inductive hypothesis, the current state in the FSM returns ?
and the corresponding trace expression is an equation of the form X = τ

(by construction), which is built as described above (in the previous page).
Consequently,

56

4 Trace expressions

– if the event e brings the FSM in the state >, the trace expression
moves in the constant 1 by construction. Both return >;

– if the event e brings the FSM in the state ⊥, the trace expression can
not move to another state by construction and the monitoring ends
returning ⊥. Both return ⊥;

– if the event e brings the FSM in a state ?, the trace expression moves
in a new state represented by an equation of the form X = τ which
is built as described above. Both return ?.

�

Corollary 1. Trace expressions are strictly more expressive than LTL.

From (Cohen, Perrin, and Pin, 1993) we know that LTL recognize star-freeω-
regular languages, and from Theorem 1 we also know that given a LTL formula
φ, we can generate an equivalent trace expression τφ . Thus, trace expressions
are at least expressive as LTL. In Section 4.3.3 we have shown a trace expression
τ that speci�es a non context free language of traces (when only �nite traces
are considered). More formally, σ ∈ nτ ·1o3 = > i� σ ∈ {anbncn | n ≥ 0}. This
means that for RV (that is, when the three-values semantics is considered)
trace expressions are strictly more expressive than LTL, since the LTL is less
expressive than ω-regular languages.

57

5 State of the art

“Every saint has a past, and every sinner has a future.”
- Oscar Wilde

In this chapter, we present the formalisms and approaches that are
closest to ours. Since we are interested in verifying multiagent sys-
tems at runtime, we focused our attention on a state of the art con-
cerning formalisms and approaches used in this context. In partic-
ular, we propose and discuss a range of aspects that we consider
crucial, and we present and classify the state of the art following
them. We leave the comparison with our formalism at the end of
the thesis in Chapter 16.

The contents of this chapter are published in
(Ancona, Ferrando, and Mascardi, 2018b)

58

5 State of the art

5.1 Engineering Multiagent Systems

When MAS are exploited in real world scenarios, it is extremely common to
have to tackle problems correlated to the heterogeneity of agents. We may
think about self-driving vehicles, Internet of Things (IoT), Remote Patient
Monitoring (RPM), and so on. When the integration of sensors in the MAS
comes into play as in these scenarios, the MAS can be seen as a sophisticated
cyber-physical system whose dependability must be attained in order to avoid
severe failures.

According to (Avizienis et al., 2004), there are many di�erent means to
attain dependability: fault prevention, fault tolerance, fault removal, and fault
forecasting. Fault prevention is part of general engineering: prevention of
development faults is an obvious aim for development methodologies, both
for software (e.g., information hiding, modularization, use of strongly-typed
programming languages) and hardware (e.g., design rules). Fault tolerance
(Avizienis, 1967) is aimed at failure avoidance, and is carried out via error de-
tection and system recovery. Fault removal can take place during development
via veri�cation, diagnosis, correction, and during use. Finally, fault forecasting
is conducted by performing an evaluation of the system behavior with respect
to fault occurrence or activation. Self-adaptation can be seen as a means for a
system to achieve fault removal during use. It can be also a means to attain fault
tolerance, by detecting the fault source and autonomously adopting strategies
that allow the system to be recovered.

In (Weyns, 2018), a self-adaptive system is de�ned as a system that can
handle changes and uncertainties in its environment, the system itself and
its goals autonomously (external principle), and that comprises two distinct
parts: the �rst which interacts with the environment and is responsible for the
domain concerns; the second which interacts with the �rst part and monitors its
environment, and is responsible for the adaptation concerns (internal principle).
The aim of self-adaptation is to let the system collect additional data about
the uncertainties during operation, use them to resolve uncertainties, reason
about itself, and based on its goals recon�gure or adjust itself to satisfy the
changing conditions.

Adaptation may take place in very di�erent ways ranging from switching
from the current behavioral protocol to a higher-priority one in systems
where protocols are pre-compiled �rst class entities (Ancona et al., 2015a), to
generating behaviour alternatives on-the-�y via an adaptation planner based
on a genetic algorithm (Chen et al., 2017), from monitoring a set of target goals
of a goal-driven agent looking for the activation of some adaptation trigger
(Dalpiaz et al., 2010), to exchanging immediate and retrospective experiences
in order to generate new adaptation policies (Jiao and Sun, 2016).

MAS are recognized as an appealing approach for developing decentralized
self-adaptive systems (Weyns and George�, 2010); self-adaptive MAS engin-
eered via some IDE, able to undergo static, a priori veri�cation via formal
methods, simulation or testing, or to be veri�ed at runtime via monitoring,
are suitable to address some of the challenges raised by dependability, besides

59

5 State of the art

those associated with �exibility.
In this chapter we analyze and compare four approaches for engineering

complex systems which are based on an explicit and formal model of either the
system architecture, or its behavior, or the interactions taking place therein.

The existence of an IDE, the support to parametricity and probability at
language level, and the ability to check protocol enactability and to generate
protocol-driven code are the dimensions we take into account for stating how
much an approach attains fault prevention.

Testing, static and dynamic veri�cation abilities, and support to some form
of self-adaptation, are the dimensions we take into account for stating how
much an approach attains fault tolerance and fault removal. Given that
the term self-adaptation is not precisely de�ned in the literature (Weyns, 2018),
we leave this dimension vague enough to cover all the possible de�nitions.

To reduce subjectivity in the choice of the approaches to analyze, we
performed a thorough search with both Google Scholar, scholar.google.
com, and Scopus, www.scopus.com and we identi�ed the most promising ap-
proaches for engineering self-adaptable MAS taking the number of publications
dealing with the approach, the cumulative number of citations (normalized on
number of years the approach has been around), and the publications quality
into account. We limited our investigation to approaches based on notations
amenable for formal reasoning and veri�cation. As an example, despite its
undoubted impact on the agent-oriented software engineering development,
we do not discuss AUML (Bauer, Müller, and Odell, 2001) because it is not a
formal notation.

In our analysis, we took the following ten features into account:
– Modelled issues: which aspects of the MAS are modeled in an explicit,
automatically processable way?
– Modeling approach: which notation/language has been adopted for model-
ing the aspects above?
– Integrated development environment (attains fault prevention): does
the notation/language come with an IDE facilitating its usage?
–Parametricity (attains fault prevention): does the language/notation sup-
port some form of parametricity, boosting modularity and reuse of “behavior
templates”?
– Probability (attains fault prevention): does the language/notation sup-
port some form of probability, boosting robustness and reliability in real
systems?
– Testing/simulation (attains fault tolerance and removal): does the ap-
proach support testing or simulation of the modelled features?
– Apriori veri�cation (attains fault tolerance and removal): does the ap-
proach support a priori formal veri�cation?
– Runtime veri�cation (attains fault tolerance and removal): does the
approach support runtime veri�cation?
– Self-adaptation (attains �exibility and fault tolerance and removal):
does the approach support facilities for engineering self-adaptable MAS, such

60

scholar.google.com
scholar.google.com
www.scopus.com

5 State of the art

as environment monitoring and autonomous behaviour switch based on sens-
ory input?
– Protocol enactability and protocol-driven code generation (attains
fault prevention): in case the modelled feature is an agent interaction pro-
tocol, does the approach support methods to ensure its enactability? Does it
o�er tools for automatically generating code for agents that follow the given
protocol? If yes, in which agent programming language?
– Case studies and applications: Are there case studies showing how to use
the notation/language? Has the notation/language been adopted for develop-
ing real applications outside academia, targeted to users di�erent from the
authors themselves?

The four approaches are presented in alphabetical order. All the descriptions
have been validated by the main authors of the approach, acknowledged in the
respective sections. At the end of the thesis (in Section 16.1) we evaluate also
trace expressions with respect to these features. In Section 16.1.1, we summarize
and compare trace expressions with the four following approaches.

5.2 Blindingly Simple Protocol Language

This section has been validated by Amit Chopra and Munindar P. Singh.

BSPL, the blindingly simple protocol language (Singh, 2011a), is a declarative
approach based on two main constructs: de�ning a message schema and com-
posing existing protocols. BSPL treats interaction as �rst class and puts no
constraints on the ordering or occurrence of messages. W.r.t. other approaches
to protocol modeling, BSPL relaxes the assumption about point-to-point mes-
sage ordering as illustrated in the papers mentioned below, and in (Chopra
and Singh, 2015b; King et al., 2017).

– Modelled issues: interaction protocols from a global perspective.
– Modeling approach: a protocol de�nes a scope within which its roles, para-
meters, and messages are uniquely named. The roles and parameters of a
protocol identify its public interface. A protocol can either consist of one
message schema (template) or of the composition of two or more protocols.
The notation is textual.
– Integrated development environment: Not available.
– Parametricity: BSPL relies upon parameters which can be adorned for cap-
turing constraints on what parameter bindings to propagate in what direction.
Splee (Chopra, Christie V, and Singh, 2017) generalizes BSPL by making roles
themselves information parameters that take agents as values, paving the way
to dynamic role binding and multicast.
– Probability: No paper has been published on probabilistic reasoning. Even
though, Chopra and Singh consider that it can be supported and conceptually
doable.
– Testing/simulation: an approach for engineering BSPL-based systems is

61

5 State of the art

presented in (Singh, 2014) where Bliss, a conceptual model overlaying BSPL, is
presented. Bliss yields simple steps to help ensure that the resulting protocol
adequately captures the given requirements with respect to the social object.
Even if testing is not explicitly mentioned in that paper, Bliss moves some
initial steps towards this direction.
– A priori veri�cation: in (Singh, 2012) the semantic requirements of BSPL
are captured in a purely declaratively fashion, allowing a logic-based reasoner
to compute with them.
– Runtime veri�cation: BSPL and LoST, the Local State Transfer described
in (Singh, 2011b) for enacting communication protocols following a declarative
approach, go hand in hand. LoST is perfectly distributed and relies only upon
the local knowledge of each business partner. It provides runtime veri�cation
in that each agent can verify the integrity of incoming messages. This veri-
�cation is necessarily limited to what is detectable from the local view of the
recipient.
– Self-adaptation: Not supported.
– Protocol enactability and protocol-driven code generation: BSPL is
designed to enforce protocols to be enactable. Architectural adapters (local
algorithms) for producing compliant BSPL enactments are presented in (Singh,
2011b) and have been implemented by Chopra’s students.
– Case studies and applications: the NetBill protocol implementation in
both BSPL and Bliss is presented in (Singh, 2014); more examples can be found
in the other referenced works.

5.3 Commitment-based Interaction

This section has been validated by Amit Chopra and Munindar P. Singh.

Commitment Machines (CM), �rst introduced by Yolum and Singh in 2001 to
describe agent interaction protocols in terms of the social commitments of the
participants to one another (Yolum and Singh, 2001), spun o� an impressive
body of work and are one of the most lively paradigms for protocol modeling.

– Modelled issues: interaction protocols from a global perspective.
– Modeling approach: in the original paper, the formal language for repres-
enting commitment machines is based on propositional logic plus a “commit-
ment” operator and a “leads to” operator to capture strict implication. Many
languages based on social commitments and inspired by that seminal work
exist; we may cite 2CL featuring the de�nition of patterns of interaction as
sets of constraints (Baldoni, Baroglio, and Marengo, 2010); extensions that
improve the way commitments are discharged and pre-conditions are speci�ed
(Winiko�, Liu, and Harland, 2004a), axiomatizations of operations in a �rst
order Event Calculus framework to increase expressiveness (Chesani et al.,
2013).
– Integrated development environment: a set of integrated software tools

62

5 State of the art

supporting 2CL protocol design and analysis is presented in (Baldoni et al.,
2014).
– Parametricity: in (Fornara and Colombetti, 2003), the content and the condi-
tion �elds of commitment objects are described through schemes representing
temporal proposition objects in parametric form; parametricity is also ad-
dressed in (Desai, Chopra, and Singh, 2009).
– Probability: In (Günay, Liu, and Zhang, 2016) Gunay, Liu and Zang present
the ProMoca framework, which provides an expressive modeling language that
includes various features to model commitment protocols. ProMoca supports
probabilistic modeling to capture uncertainty in behaviours and beliefs of
agents.
– Testing/simulation: tools supporting some steps (including testing) of the
Amoeba methodology (Desai, Chopra, and Singh, 2009) for modeling and
evolving commitment protocols exist (Desai et al., 2005a).
– A priori veri�cation: many proposals for verifying generic properties and
for model checking commitment protocols exist including (Desai et al., 2007b;
El Kholy et al., 2014; El-Menshawy, Bentahar, and Dssouli, 2011; Yolum, 2006).
– Runtime veri�cation: One of the �rst papers dealing with runtime veri�ca-
tion of commitment-based protocols is (Venkatraman and Singh, 1999) where a
vector representation of time and an early form of causality (e.g., making sure
the delegation of a commitment is propagated to the creditor) are considered.
More recently, the extension to commitment machines discussed in (Chesani et
al., 2013) comes along with an implementation to support runtime monitoring,
while Cupid (Chopra and Singh, 2015a) and Custard (Chopra and Singh, 2016)
give information-based characterization of norms, including commitments;
both support tracking runtime compliance with norms as the formalization is
based on database queries.
– Self-adaptation: in (Dalpiaz et al., 2010), the authors formalize the notion
of a participant’s strategy for a goal in terms of the required commitments and
present a conceptual model for adaptation built around this notion of strategy
that allows using arbitrary strategy selection criteria.
– Protocol enactability and protocol-driven code generation: the neces-
sary and su�cient conditions for enactability of commitment protocols are
discussed in (Desai and Singh, 2008), where an algorithm for generating roles
consistent with enactable protocols is also presented. Tosca (King et al., 2017)
gives an operationalization of commitments over BSPL from the point of view
of decentralized enactments.
– Case studies and applications: almost all the papers in the commitment
protocols research strand present examples of use and case studies. Commit-
ments have been used to real foreign exchange protocols and a real insurance
protocol in Amoeba (Desai et al., 2007a), and there is one application out-
side academia carried out within the US Ocean Observatories Initiative and
presented in (Arrott et al., 2009).

63

5 State of the art

5.4 New Hierarchical Agent Protocol Notation

This section has been validated by Michael Winiko�, Nitin Yadav, and Lin
Padgham.

HAPN, the New Hierarchical Agent Protocol Notation proposed in (Winiko�,
Yadav, and Padgham, 2018), extends Finite State Machines into hierarchical
FSM to cope with states that contain one or more concurrent sub-protocols.

– Modelled issues: interaction protocols from a global perspective.
– Modeling approach: protocols are modelled using a graphical notation
that extends the standard FSM one by structuring each transition to follow
the form Sender → Receiver: msg(args) [guard]/effect, showing for
each (sub-)protocol its name and interface variables in the initial state, and al-
lowing states to have sub-protocols. The bigger di�erence w.r.t. FSM, however,
is not in the format of edges, but the fact that HAPN uses a hierarchical FSM
with a particular semantics discussed in the paper.
– Integrated development environment: a prototype tool to create and edit
protocols is presented in (Yadav, Padgham, and Winiko�, 2015a).
– Parametricity: the notation allows protocols to be parametrized by roles
and variables.
– Probability: Not supported.
– Testing/simulation: the editing tool presented in (Yadav, Padgham, and
Winiko�, 2015a) is able to simulate protocol execution.
– A priori veri�cation: the importance verifying the protocol properties,
including enactability, is clear to the HAPN authors who suggest that “since
HAPN protocols can be �attened into FSM with variables, and veri�cation tech-
niques use structures similar to FSMs, the existing techniques are applicable to
verifying these properties in the context of HAPN protocols”. The �attening al-
gorithm is not implemented.
– Runtime veri�cation: a runtime veri�cation tool is not available, but the
IDE supporting HAPN could easily be extended to check traces at runtime,
since it is already able to check traces at design-time.
– Self-adaptation: Not supported.
–Protocol enactability andprotocol-driven code generation: HAPN does
not solve the enactability issue.
– Case studies and applications: in (Winiko�, Yadav, and Padgham, 2018)
three case studies are presented: the play date (based on a real application), an
auction, and holonic manufacturing.

5.5 Self-adaptive Systems Engineering

This section has been validated by Danny Weyns.

In a bunch of papers spanning from 2004 to now, Weyns and colleagues
address the issues of engineering self-adaptive situated MAS from almost any

64

5 State of the art

point of view, ranging from design (Iglesia and Weyns, 2015; Steegmans et al.,
2004; Weyns, Schelfthout, and Holvoet, 2005) to static veri�cation (Iftikhar
and Weyns, 2012), from runtime veri�cation (Iftikhar and Weyns, 2016) to
simulation (Weyns and Iftikhar, 2016). As stated in (Weyns, 2012), the purpose
of their research is to create a methodological approach and framework for (1)
model checking of the behavior of a self-adaptive system during design, (2)
model-based testing of the concrete implementation during development, and
(3) runtime diagnosis after system deployment.

Although these works constitute a coherent body of knowledge, they cannot
be sorted out into a unique approach like the others discussed in this section.
Nevertheless, the �ndings presented therein are important for the MAS com-
munity, making the analysis of this approach extremely relevant.

– Modelled issues: all the design artifacts which characterize a self-adaptive
system including architecture, control �ow, actions, interactions.
– Modeling approach: depends on the work; as an example, in (Iftikhar and
Weyns, 2012) the authors use timed automata to model the main processes
in the system and timed computation tree logic for the speci�cation of the
required properties, whereas in (Weyns and Iftikhar, 2016) they use stochastic
timed automata to describe runtime models of the system and runtime simula-
tion for the analysis of quality properties.
– Integrated development environment: the ActivFORMS runtime envir-
onment (Active FORmal Models for Self-adaptation) (Iftikhar and Weyns, 2017),
supported by the Uppaal suite (David et al., 2015), allows designers to model
and verify a feedback loop. The veri�ed models can be directly deployed on
top of a runtime environment that executes them, supporting visualization of
the executing models, the state of the goals, and on the �y updates of both.
– Parametricity: parametricity is supported in di�erent ways depending on
the modelled issue and the adopted formalism; for example, when stochastic
timed automata models are used like in (Weyns and Iftikhar, 2016), they can
be parametrized to capture variations, changes, and in particular uncertainties
in the system or the environment.
– Probability: Weyns and colleagues (Calinescu et al., 2018; Weyns et al., 2018)
use probabilistic models at runtime to represent a system and its environment
from the point of view of di�erent quality properties (for example a model that
represents energy consumption of an IoT network, or a model that represents
the communication latency in the network). These models have two types
of parameters. On the one hand, the models have parameters that represent
uncertainties of the system or its environment (for example the interference
of network links). These parameters are updated with actual values (possibly
learned over time). On the other hand, the models have parameters that repres-
ent “knobs” that can be set to model di�erent possible system con�gurations
(for example the power setting of the radio of a node to communicate mes-
sages over a wireless link to another node). They then apply (statistical) model
checking at runtime to analyse these models and predict the expected quality

65

5 State of the art

properties of di�erent con�gurations. Based on the results they may then
adapt the system to a new con�guration (i.e., the one with the best predicted
values for a set of quality goals) to ensure or improve its quality goals.
– Testing/simulation: ActivFORMS allows users to perform a set of tests
aimed at validating their models before deployment or selecting adaptation
options during runtime.
– A priori veri�cation: exploitation of model checking to verify behavioral
properties of decentralized self-adaptive systems has been faced in many works
including (Iftikhar and Weyns, 2012).
– Runtime veri�cation: in one of the most recent works dealing with veri�c-
ation of properties at runtime (Iftikhar and Weyns, 2016), the authors exploit
runtime statistical model checking as an e�cient strategy to tradeo� between
the accuracy of the provided guarantees and the required computation time
and system resources.
– Self-adaptation: all the works mentioned in this section take self-adaptation
into account.
– Protocol enactability and protocol-driven code generation: Not sup-
ported.
– Case studies and applications: many self-adaptive systems artifacts and
model problems exemplars have been developed by the authors including
(Gerasimou et al., 2017; Iftikhar et al., 2017; Weyns and Calinescu, 2015). The
artifact presented in (Iftikhar et al., 2017) o�ers a real world deployment of
an IoT setup that can be used for experimentation. The IoT network has been
developed for the VersaSense company, https://www.versasense.com/.

66

https://www.versasense.com/

Part III

Formalism extensions

This part of the thesis is totally focused on the formalism extensions that have
been proposed during the Ph.D. program.
The �rst extension is presented in Chapter 6. It brings variables inside the
trace expression formalism. Thanks to such extension, we can represent more
complex properties and protocols, because we can handle events containing
values. In Chapter 6, we show how the trace expressions semantics can be
extended with variables and we motivate our work through examples.
The second extension is presented in Chapter 7. It brings probabilities inside
the trace expression formalism. Even though the motivations related to this
extension are less intuitive than the motivations for the parametric extensions,
in Chapter 7 we show how introducing probabilities inside our formalism can
increment its robustness for real world scenarios, where we are interested in
verifying less reliable systems (with high uncertainty in the observed events).
After the presentation of the probabilistic extension, we will present how
to use it in order to achieve the runtime veri�cation of systems with state
estimation.

67

6 Parametric Trace Expressions

“Try not to become a man of success.
Rather become a man of value.”

- Albert Einstein

In this chapter, we propose an extension of the trace expression
formalism to support parametric runtime veri�cation. The full se-
mantics of parametric trace expressions is presented, together with
some examples to show their expressive power. The proposed exten-
sion has been implemented and experimented in JADE with a non
trivial case study consisting of a variation of the English auction
interaction protocol speci�cation.

The contents of this chapter are published in
(Ancona, Ferrando, and Mascardi, 2017)

68

6 Parametric Trace Expressions

6.1 Introduction

During the Ph.D. program, there have been several occasions where we needed
a more expressive formalism to properly manipulate properties and protocols.
Since it is common the use of parameters inside speci�cations to handle datas,
times, and so on, our �rst attempt to extend the trace expression formalism
has been the addition of parameters in event types. As we will see after in the
chapter, even though such formalism extension is not too much invasive, it
allows enlarging undoubtedly the set of possible properties and protocols that
can be de�ned.

In particular, parametricity (Luo et al., 2014b) is an important feature of a
monitoring system for making RV more e�ective, since, typically, correctness
of traces depends on the speci�c data values that are carried by the monitored
events of the trace, and that, in general, cannot be predicted statically. For
instance, the veri�cation of an interaction protocol may require that the values
exchanged by two agents are in a certain relation; protocols may also be
parametric in the involved agents, and resources, and this parametricity is
naturally re�ected on the data carried by values.

6.1.1 Illustrative example

In Section 4.2.2, we presented the general notion of event type. In order to
make the presentation of the parametric extension more clear, we de�ne a
predicate match to represent when an event matches a speci�c event type.

match(e,ϑ) ⇐⇒ e ∈ nϑo
Considering again the ping pong example introduced in Section 4.3.1, where

there were the event types ping and pong, we now have:

match(e, ping) ⇐⇒ e ∈ npingo ⇐⇒ e = send(alice, bob, _)

match(e, pong) ⇐⇒ e ∈ npongo ⇐⇒ e = send(bob, alice, _)
Even though the ping-pong protocol is extremely simple, it allows us to

introduce intuitively the advantage of parametricity. In particular, considering
the in�nite version PingPongForever , we could be interested in enriching the
events’ behaviour with values. We may add an integer to the ping and pong
communications, with the constraint that alice sends an integer to bob, and
bob must reply with a greater integer.

For instance, a valid execution trace could start with
send(alice, bob, inform(42)) followed by send(bob,alice, inform(43)),
send(alice,bob, inform(2)), and send(bob, alice, inform(5)).

Let ping(_) and pong(_) denote the event types s.t.

match(e, ping(n)) i� n ∈ Z, e = send(alice, bob, inform(n))

and

match(e, pong(n)) i� n ∈ Z, e = send(bob, alice, inform(k)) and k > n

69

6 Parametric Trace Expressions

With these event types, the best speci�cation we can write with a trace ex-
pression is

PingPongForever2 = ping(n):pong(n):PingPongForever2
However, this speci�cation fails to support data parametricity since the

value n has to be picked up once for all, hence the trace expression de�nes a
protocol where at each round alice has to send the same integer.

The problem becomes even more evident if we consider the ping-pong
protocol which requires both agents to always reply with an integer greater
than the previously received one. For instance, the trace shown above would
not be correct, while a valid execution trace could start with

send(alice, bob, tell(42))
followed by

send(bob, alice, inform(43)), send(alice, bob, inform(52)),
and

send(bob, alice, tell(55)).

6.2 Formalization

To support parametricity, we let event types in trace expressions to contain
variables; following the Prolog notation, we use identi�ers starting with a
capital letter to denote variables in event types; for instance, event type ping(N)
contains variable N . Accordingly, the semantics of event types and, hence, the
match function, have to be extended; if ϑ is an event type, possibly containing
free variables, then we write match(e,ϑ) = σ to mean that event e matches
event type ϑ with computed substitution σ which must be grounding for the
event type ϑ , that is, the domain on which σ is de�ned coincides with the set
of variables in ϑ .

Substitutions are �nite domain partial maps from a �xed universe of vari-
ables X into a �xed universe of values V; we denote with dom(σ) the �-
nite domain of σ . The substitution with the empty domain is denoted by ∅.
The equality σ = σ1 ∪ σ2 holds i� dom(σ) = dom(σ1) ∪ dom(σ2), and for all
X ∈ dom(σ), σ (X) = σ1(X) if X ∈ dom(σ1), and σ (X) = σ2(X) if X ∈ dom(σ2)
(hence, σ1 and σ2 must coincide on dom(σ1) ∩ dom(σ2)). The notation σ |X
denotes the substitution where X is removed from its domain: σ |X = σ ′ i�
dom(σ ′) = dom(σ) \ {X } and for all X ∈ dom(σ ′) σ ′(X) = σ (X). The notation
σϑ denotes the event type obtained from ϑ by substituting all occurrences of
X ∈ dom(σ) in ϑ with σ (X).

Besides extending event types with variables, we need to introduce a new
trace expression construct to control the scope of variables: <X ;τ> binds the
free occurrences of X in τ ; accordingly, the trace expression στ obtained from
τ by substituting all free occurrences of X ∈ dom(σ) in τ with σ (X), is de�ned
as follows:

σ (ϑ :τ) = (σϑ):(στ)
σ (τ1op τ2) = (στ1)op (στ2) for op ∈ {∨,∧, |, ·}
σ (<X ;τ>) = <X ;σ |Xτ>

70

6 Parametric Trace Expressions

The transition system for parametric trace expressions is de�ned in Fig-
ure 6.1.

(main)
τ

e
� τ ′; ∅
τ

e
→ τ ′

(pre�x)
ϑ :τ e
� τ ;σ

σ=match(e,ϑ) (or-l)
τ1

e
� τ ′1 ;σ

τ1∨τ2
e
� τ ′1 ;σ

(or-r)
τ2

e
� τ ′2 ;σ

τ1∨τ2
e
� τ ′2 ;σ

(and)
τ1

e
� τ ′1 ;σ1 τ2

e
� τ ′2 ;σ2

τ1∧τ2
e
� τ ′1∧τ

′
2 ;σ

σ=σ1∪σ2 (shu�e-l)
τ1

e
� τ ′1 ;σ

τ1 |τ2
e
� τ ′1 |τ2;σ

(shu�e-r)
τ2

e
� τ ′2 ;σ

τ1 |τ2
e
� τ1 |τ ′2 ;σ

(cat-l)
τ1

e
� τ ′1 ;σ

τ1·τ2
e
� τ ′1 ·τ2;σ

(cat-r)
τ2

e
� τ ′2 ;σ

τ1·τ2
e
� τ ′2 ;σ

ε (τ1)

(var-t)
τ

e
� τ ′;σ

<X ;τ> e
� στ ′;σ |X

X ∈dom(σ) (var-f)
τ

e
� τ ′;σ

<X ;τ> e
� <X ;τ ′>;σ

X<dom(σ) (ε -var)
ε(τ)

ε(<X ;τ>)

Figure 6.1 . Transition system for parametric trace expressions

The main transition relation τ
e
→ τ ′ is de�ned in terms of the auxiliary

relation τ e
� τ ′;σ , where σ is the substitution generated during the transition

step. This is required because it is not possible to predict from which variable
occurrence a certain substitution is generated; consider for instance the trace
expressions ϑ1(X):τ1 |ϑ2(X):τ2, where ϑ1(X) and ϑ2(X) are two distinct event
types containing occurrences of variable X ; if event e �res a transition on
the lhs operand of the shu�e operator, then the computed substitution σ is
s.t. σ = match(e,ϑ1), and the trace expression is rewritten into σ (τ1 |ϑ2(X):τ2),
otherwise, if the transition is �red on the rhs, then σ = match(e,ϑ2), and the
trace expression is rewritten into σ (ϑ1(X):τ1 |τ2).

Rule (main) de�nes the main transition relation in terms of the auxiliary
transition relation which computes the substitution; at top level a correct trace
expression cannot contain free variables (that is, undeclared variables), hence
the main transition is �red only if the computed substitution is empty.

In rule (pre�x) the substitution is generated by the match function applied
to the current event e and the event type ϑ .

Rules for union, shu�e, and concatenation are the corresponding generaliz-
ation of the rules in Figure 4.1.

In rule (and) the side condition requires that the substitutions σ1 and σ2
computed for the two operands must coincide on the intersection of their
domains; the �nal substitution σ is obtained by merging σ1 and σ2. For instance,
for the trace expression

τ = send(alice,R,C):τ1∧send(S, bob,C):τ2
and the event e s.t. Alice sends to Bob tell(42), we have

send(alice,R,C):τ1
e
� τ1; {R 7→ bob,C 7→ tell(42)}

send(S, bob,C):τ2
e
� τ2; {S 7→ alice,C 7→ tell(42)}

therefore τ e
� τ1∧τ2; {R 7→ bob, S 7→ alice,C 7→ tell(42)}.

Rules (var-t) and (var-f) deal with the new construct <X ;τ> for variable
scoping. The former rule is applied when variableX is contained in the domain

71

6 Parametric Trace Expressions

of the computed substitution σ for the transition starting from τ ; in such a
case σ is applied to the trace expression τ ′ in which τ rewrites to, and the
scoping construct is removed; furthermore, the computed substitution is σ |X .
The latter rule is applied when variable X is not contained in the domain of
the computed substitution σ for the transition starting from τ ; in this case the
scoping construct is not removed, and the computed substitution coincides
with σ .

Rules for the auxiliary predicate ε(_) are the same as those in Figure 4.1,
except for the straightforward rule for the new construct <X ;τ>.

6.3 Illustrative example revisited

Let us consider again the variation of the PingPongForever2 protocol proposed
in Section 6.1.1, where Alice sends an integer to Bob, and Bob must reply with
a greater integer; such a protocol can be speci�ed by the following parametric
trace expressions:

PingPongForever3 =
<N ; ping(N):pong(N):PingPongForever3>

where, again, ping(_) and pong(_) denote the event types s.t. match(e, ping(n))
i� n ∈ Z, e = send(alice, bob, tell(n)), and match(e, pong(n)) i� n ∈ Z, e =
send(bob, alice, tell(k)) and k > n, respectively.

Since PingPongForever3 does not contain free variables, applying the sub-
stitution {N 7→ 42} to the trace expression pong(N):PingPongForever3 yields
the trace expression pong(42):PingPongForever3.

Let e1 and e2 correspond to the events “Alice sends tell(42) to Bob”, and “Bob
sends tell(45) to Alice”, respectively; we show that the steps τ e1

→ pong(42):τ e2
→

τ are derivable, where τ is the trace expression de�ned by PinдPonдForever3.
The transition step τ

e1
→ pong(42):τ can be derived with the following

derivation tree, since match(e1, ping(N)) = {N 7→ 42}:

(main)

(var-t)

(pre�x)
ping(N):pong(N):τ

e1
� pong(N):τ ; {N 7→ 42}

<N ; ping(N):pong(N):τ>
e1
� {N 7→ 42}(pong(N):τ); ∅

<N ; ping(N):pong(N):τ> e1
→ pong(42):τ

The further transition step pong(42):τ e2
→ τ can be derived as follows, since

match(e2, pong(42)) = ∅:

(main)

(pre�x)
pong(42):τ

e2
� τ ; ∅

pong(42):τ e2
→ τ

With this second transition step the �rst round of the protocol is com-
pleted and the current state of the system is represented again by τ (that is,
PinдPonдForever3); hence, Alice is expected to send any integer value to Bob
(and not just 42), as speci�ed by the protocol.

We can now consider the more challenging version of the protocol where
both Alice and Bob are required to reply with an integer greater than the

72

6 Parametric Trace Expressions

previously received one. In this case we need to adopt a pattern that will be
employed also in the case study in Section 6.4 to propagate information regard-
ing data values; in this particular case, the last received integer is propagated
with two di�erent variables N1 and N2 whose use is alternated in the trans-
ition steps: at one transition step N1 and N2 carry the last sent value and the
previous one, respectively, while at the next transition step N1 and N2 carry
the previously sent value and the last one, respectively.

PingPongForever4 = <N1; ping(N1):Forever>
Forever = <N2; pong(N1,N2):<N1; ping(N2,N1):Forever>>

Besides the event type ping(_) already used in the previous examples, we
employ also the event types ping(_, _), and pong(_, _) s.t. match(e, ping(k,n))
i� k,n ∈ Z, e = send(alice, bob, tell(n)), k < n, and match(e, pong(n)) i� k,n ∈

Z, e = send(bob, alice, tell(n)) and k < n, respectively.
Let e1, e2, and e3 correspond to the events “Alice sends tell(42) to Bob”, “Bob

sends tell(45) to Alice”, and “Alice sends tell(46) to Bob”, respectively; we show
that the steps τ e1

→ τ1
e2
→ τ2

e3
→ τ3 are derivable, for suitable τ1, τ2, and τ3, with

τ denoting the trace expression de�ned by PinдPonдForever4.
If τ1 = <N2; pong(42,N2):<N1; ping(N2,N1):Forever>>, then the trans-

ition step τ
e1
→ τ1 can be derived with the following derivation tree, since

match(e1, ping(N1)) = {N1 7→ 42}:

(main)

(var-t)

(pre�x)
ping(N1):Forever

e1
� Forever ; {N1 7→ 42}

<N1; ping(N1):Forever>
e1
� {N1 7→ 42}Forever ; ∅

<N1; ping(N1):Forever>
e1
→ τ1

The next transition step τ1
e2
→ τ2 can be derived with τ2 =

<N1; ping(45,N1):Forever>, since match(e2, pong(42,N2)) = {N2 7→ 45}.

(main)

(var-t)

(pre�x)
τ ′1

e2
� <N1; ping(N2,N1):Forever>; {N2 7→ 45}

τ1
e2
� <N1; ping(45,N1):Forever>; ∅

τ1
e2
→ τ2

In the derivation tree,
τ ′1 = pong(42,N2):<N1; ping(N2,N1):Forever>.

Finally, the transition step τ2
e3
→ τ3 can be derived with

τ3 = <N2; pong(46,N2):<N1; ping(N2,N1):Forever>>

since match(e3, ping(45,N1)) = {N1 7→ 46}.

(main)

(var-t)

(pre�x)
ping(45,N1):Forever

e3
� Forever ; {N1 7→ 46}

τ2
e3
� {N1 7→ 46}Forever ; ∅

τ2
e3
→ τ3

73

6 Parametric Trace Expressions

6.4 Case study

In this section we show how parametric trace expressions support runtime
monitoring of a non trivial interaction protocol between agents.

In particular, we formalize through parametric trace expressions an English
auction where the auctioneer proposes to sell an item for a given price and
the bidders either accept or reject the proposal; as long as more than one
bidder accepts, the price is raised and another negotiation round is made. The
protocol is consistent with the existing descriptions of the English auction
that can be found online, even if it slightly di�ers from the English auction
FIPA speci�cation (Foundation for Intelligent Physical Agents, 2001).

6.4.1 Informal speci�cation of the protocol

The protocol involves an auctioner agent, and two or more bidder agents. The
protocol starts with a preamble where auctioner sends a single message to all
bidders (in any order) informing that the auction for selling a certain item is
going to start. It is assumed that all contacted bidders will participate to the
auction, until auctioner will notify bidders about the closing of the auction.

The preamble is followed by an initial proposal round, where auctioner
sends a single message to all bidders with a proposed item price, which is
equal for all bidders; then auctioner waits to receive a single reply from all
bidders before deciding to either closing the auction, or moving to the next
proposal round. Every bidder can either accept or reject the proposal; a bidder
b will keep attending the auction, even when b decides to reject a proposal at
a certain round.

Agent auctioner moves to the next proposal round if at least two bidders
have accepted the previously proposed price; in such a case, the new proposed
price will be at least greater or equal than p+∆p, where p is the price proposed
at the previous round, and ∆p is an a priori �xed positive constant.

If one bidder (let us assume it is bidder b) has accepted the last proposed
price, then auctioner closes the auction by sending a single message to all
bidders; bidder b is noti�ed of the purchase of the item, while all other bidders
are informed that the item has been sold.

Finally, if no bidder accepts the current proposal, then auctioner closes the
auction by sending a single message to all bidders to notify them that the item
is unsold.

6.4.2 Formal speci�cation of the protocol

For simplifying the presentation we describe the parametric trace expression
specifying the protocol for just three agents: the auctioner and two bidders
bidder1 and bidder2; it is possible to generalize such a speci�cation1 to monitor

1The generalized trace expression is described at http://www.ParametricTraceExpr.

altervista.org, from where the Prolog speci�cation of all the examples presented in

74

http://www.ParametricTraceExpr.altervista.org
http://www.ParametricTraceExpr.altervista.org

6 Parametric Trace Expressions

a system with an unspeci�ed number of participants that can be �xed only at
runtime.

Even in the simpli�ed setting, parametric trace expressions are still required
for checking the following facts: at each proposal round the same proposed
price is sent to all bidders; at each proposal round auctioner proposes a price
which has been increased of at least ∆p, if there has been a previous round;
the auction is correctly closed with the expected noti�cations to bidders.

We provide the semantics of the protocol ground event types only, as the
semantics for non-ground event types can be easily derived from it. For in-
stance, match(e, start(b)) i� e = send(auctioner,b, tell(start)) just means that,
for the ground event type start(b), matching with event e succeeds and returns
the empty substitution if and only if e = send(auctioner,b, tell(start)) (that is,
auctioner sends to b the message with content tell(start)).

Consequently,match(e, start(B)) succeeds and returns the substitution {B 7→
b} i� match(e, start(b)) succeeds (with the empty substitution).

In the following, we use the _ anonymous variable typical of Prolog to
represent part of the term we are not interested in. With anonymous variables
we unify anything (as for free variables but without the need of a name since
we will not use it).

match(e, start) i� e = send(auctioner, _, tell(start))
match(e, start(b)) i� e = send(auctioner,b, tell(start))
match(e, is_bidder(b)) i�

e = send(auctioner,b, _) or e = send(b, auctioner, _)
match(e, prop) i� e = send(auctioner, _, propose(_))
match(e, prop$(p)) i� e = send(auctioner, _, propose(price(p)))
match(e, prop_to(b)) i� e = send(auctioner,b, propose(_))
match(e, prop(b,p)) i� e = send(auctioner,b, propose(price(p)))
match(e, prop(b,p1,p2)) i�

e = send(auctioner,b, propose(price(p2))), p2 ≥ p1 + ∆p

match(e, yes) i� e = send(_, auctioner, accept−proposal)
match(e, yes(b)) i� e = send(b, auctioner, accept−proposal)
match(e, no) i� e = send(_, auctioner, reject−proposal)
match(e, no(b)) i� e = send(b, auctioner, reject−proposal)
match(e, reply) i� match(e, yes) or match(e, no)
match(e, fail) i� e = send(auctioner, _, tell(close(fail)))
match(e, fail(b)) i� e = send(auctioner,b, tell(close(fail)))
match(e, buy(b)) i� e = send(auctioner,b, tell(close(buy)))
match(e, close) i� e = send(auctioner, _, tell(close(_)))
match(e, prop_or_reply) i� match(e, prop) or match(e, reply)
match(e, reply_or_close) i� match(e, reply) or match(e, close)

We use the �lter and intersection operators to decompose the speci�cation
modularly in order to simplify de�nitions and improve readability. The para-

this chapter, the parametric trace expressions transition function, and the JADE MAS and
monitor can be downloaded.

75

6 Parametric Trace Expressions

metric trace expression specifying the overall protocol can be obtained as the
intersection of the following simpler parametric trace expressions, each enfor-
cing some of the properties that have to be veri�ed by the protocol. Adopting
this divide et impera speci�cation pattern helps the protocol designer to cope
with complex protocols, by modeling one property at a time.

In the rest of the chapter we will abbreviate with ϑ trace expressions of
shape ϑ :ϵ , when such a shortcut will not arise ambiguities.
preamble. The protocol must start with two messages of auctioner sent
to all bidders (in any order) to inform them that the auction is going to start.

Preamble = (start(bidder1)|start(bidder2))·1

The use of the derived constant 1 (see Section 4.2.6) denoting the set of all
possible traces corresponds to the fact that this trace expression speci�es the
preamble only.
bidder flow. Trace expressions Bidder1 and Bidder2 specify the correct
message �ow for bidder1 and bidder2, respectively.

Bidder1 = is_bidder(bidder1)�Bidder
Bidder2 = is_bidder(bidder2)�Bidder
Bidder = start:prop:reply:BidderLoop
BidderLoop = close∨prop:reply:BidderLoop

Through the� operator, only messages involving either bidder1 (for trace ex-
pression Bidder1) or bidder2 (for trace expression Bidder2) are checked. Thanks
to the use of the �lter operator, the two trace expressions Bidder1 and Bidder2
can share the same trace expression Bidder (whose de�nition depends from
BidderLoop).

Among all requirements imposed by these trace expressions there is also
the constraint that there must exist at least one proposal round.
same price proposed to bidders. This parametric trace expression
requires that at each round auctioner must send the same proposed price to
bidders. Through the� operator, SamePrice only checks messages which are
proposals sent by auctioner to bidders.

SamePrice = prop�PriceLoop
PriceLoop = ϵ∨<P ; prop$(P):prop$(P):PriceLoop>

Since a new proposal round can be started only after all bidders have sent
their replies (see the next trace expression), the two contiguous proposals that
share the same price must have necessarily been sent to di�erent bidders. The
trace expression ϵ speci�es that the sequence of proposal rounds is allowed to
terminate.
next proposal round. The following trace expression speci�es that
auctioner can start a new proposal round only after having received replies
from all bidders. Through the� operator, NextRound only checks messages
which are either proposals sent by auctioner to bidders, or acceptance/rejection

76

6 Parametric Trace Expressions

replies sent by bidders to auctioner .
NextRound = prop_or_reply�RoundLoop
RoundLoop = ϵ∨
prop_to(bidder1):((prop_to(bidder2)|reply |reply)·RoundLoop)∨
prop_to(bidder2):((prop_to(bidder1)|reply |reply)·RoundLoop)

At each round, if the �rst proposal is sent to bidder1, then the next proposal
must be sent to bidder2 (and the previous parametric trace expression ensures
that the two proposals share the same price), and two replies have to be sent.
The trace expressions Bidder1 and Bidder2 de�ned above guarantee that each
reply must follow the corresponding proposal, hence the shu�e operator can
be safely used in prop_to(bidder2)|reply |reply. A symmetric trace expression
deals with the case when the �rst proposal is sent to bidder2. As for SamePrice,
the trace expression ϵ speci�es that the sequence of proposal rounds is allowed
to terminate.
increased price. This parametric trace expression speci�es that at each
proposal round auctioner proposes a price which has been increased of at least
∆p (an a priori �xed positive constant), if there has been a previous round.
The constant ∆p is implicitly de�ned in the event type prop(b,p1,p2) which
succeeds if price p2 is proposed to bidder b, and p2 ≥ p1 + ∆p (where p1 is the
price proposed at the previous round; see the event types semantics de�ned
before).

This parametric trace expression is based on the same pattern used in
PingPongForever4 in Section 6.1.1.

Interestingly, by virtue of the parametric trace expression SamePrice that
imposes that the same price is sent to bidders at each proposal round, it su�ces
to check that the price is correctly increased only for the proposals sent to
one of the bidders; in this case the trace expression arbitrarily checks only the
proposals sent to bidder1 (through the � operator), but of course checking
the proposals sent to bidder2 would work as well.

IncPrice = prop_to(bidder1)�<P1; prop(bidder1, P1):IncLoop>
IncLoop = ϵ∨
<P2; prop(bidder1, P1, P2):<P1; prop(bidder1, P2, P1):IncLoop>>

As for SamePrice, and NextRound, the trace expression ϵ speci�es that the
sequence of proposal rounds is allowed to terminate.
closing. This parametric trace expression guarantees that the auction is
correctly closed with the expected noti�cations to bidders. Only messages
which are bidders reply or auctioner closing messages are checked through
the� operator.

While the property enforced with SamePrice and IncPrice can only be spe-
ci�ed with parametric trace expressions, closing could be expressed with a
non parametric trace expression; however, the use of variables makes the
speci�cation more compact and readable.

Close = reply_or_close�CloseLoop
CloseLoop =
<B; yes(B):(yes:CloseLoop∨<B′; no(B′):(buy(B)|fail(B′))>)∨
no(B):(no:fail:fail∨<B′; yes(B′):(buy(B′)|fail(B))>)>

77

6 Parametric Trace Expressions

Variables B and B′ are required for ensuring the correctness of closing messages
sent by auctioner . The intersection of trace expressions Bidder1, Bidder2, and
NextRound guarantees that two replies in the same round always originate
from di�erent bidders.

If bidder B accepts the proposal (yes(B)), then there are two possible cases:
either the other bidder accepts the proposal as well (yes) and, hence, there
will be another proposal round (CloseLoop), or the other bidder B′ rejects the
proposal (no(B′)) and, hence, auctioner sends (in any order) the messages to
the corresponding bidders notifying that B has purchased the item (buy(B)),
and B′ has not (fail(B′)).

If bidder B rejects the proposal (no(B)), then there are two possible cases:
either the other bidder rejects the proposal as well (no) and, hence, auctioner
noti�es both bidders that they have not purchased the item (again, trace ex-
pressions Bidder1 and Bidder2 guarantee that the two events matching fail:fail
correspond to messages sent to di�erent bidders); or the other bidder B′ ac-
cepts the proposal (yes(B′)) and, hence, auctioner sends (in any order) the
messages to the corresponding bidders notifying that B′ has purchased the
item (buy(B′)), and B has not (fail(B)).
putting all trace expressions together. Finally, the overall
speci�cation of the protocol can be obtained by assembling together the para-
metric trace expressions de�ned above through the intersection operator.

EnglishAuction = Preamble∧Bidder1∧Bidder2∧SamePrice∧
NextRound∧IncPrice∧Close

6.5 Discussion

We have proposed parametric trace expressions, an extension to trace expres-
sions expressly designed for parametric RV of multiagent systems.

Besides providing its formalization, we have implemented and experimented
RV with parametric trace expressions in JADE with a non trivial case study
consisting of a variation of the English auction interaction protocol speci�ca-
tion.

Parametric trace expressions have been also integrated inside the IDE RIVER-
tools (Chapter 14). In this way, it is possible to de�ne parametric protocols in
an easy and compact way.

78

7 Probabilistic Trace Expressions

“If we �nd ourselves with a desire that nothing in this world can satisfy,
the most probable explanation is that we were made for another world.”

- C.S. Lewis

Probabilistic Trace Expressions (PTEs) are an extension of Trace Ex-
pressions where the types of events that can be observed by a mon-
itor are associated with an observation probability. In this chapter
we introduce PTEs, we adapt the runtime veri�cation with state es-
timation approach proposed by Scott D. Stoller et al. in 2011 to them,
and we present a semantics for PTEs that allows for the estimation
of the probability to reach a given state, given a sequence of ob-
servations which may include observation gaps. Thanks to built-in
operators suitable for checking that two di�erent PTEs can perform
the same transitions, and to algorithms for transforming LTL prop-
erties into PTEs, verifying that a LTL property is met by a system
modeled by a PTE can be addressed in an elegant and natural way,
even when gaps are observed.

The contents of this chapter will be submitted to
a Journal in the MAS research area.

79

7 Probabilistic Trace Expressions

7.1 Introduction

Runtime veri�cation of complex, distributed systems under ideal conditions
(perfect observability of all the relevant events, no leaky communication chan-
nels, etc) is an hard task to perform, and has been addressed by many scienti�c
works including surveys and introductory papers (Bartocci et al., 2018; Have-
lund, Reger, and Rosu, 2018; Leucker and Schallhart, 2009), books (Bartocci
and Falcone, 2018), seminars (Bonakdarpour et al., 2016a; Havelund et al.,
2010), and conferences1. When the conditions are not ideal and some relev-
ant events cannot be observed by the monitor, generating a gap in the event
trace, the problem becomes even harder (Babaee, Gur�nkel, and Fischmeister,
2018; Bartocci et al., 2011; Joshi, Tchamgoue, and Fischmeister, 2017). A gap
represents the absence of information in the analyzed trace and corresponds
to an execution point – or to a time slot – where the monitor does not know
what the system did. Gaps may be due to the process of sampling observed
events to reduce monitoring overhead, but also to events that are partially
observable or not observable at all by the monitor: the monitor might be aware
that an event took place, but does not know which. The introduction of gaps
raises problems in checking that a temporal property is veri�ed by the system,
given that a trace of events (which may include gaps) has been observed. If
the monitor does not know which event has been observed, it cannot know
whether the temporal property is satis�ed or not.

In (Stoller et al., 2011), each time a gap in observed a Hidden Markov Model
(HMM) of the system is queried to know which events could be observed
in the current state of the system, and with which probability. This allows
the authors to estimate the probability to reach some state si after observing
obs = O1,O2, ...,Ot events, and – by generating a monitor that combines the
system HMM and the temporal property ϕ into a single integrated model – to
estimate the probability that ϕ is satis�ed after observing obs = O1,O2, ...,Ot

events.
In this chapter we take (Stoller et al., 2011) as starting point, and we combine

the approach presented therein with trace expressions, in order to obtain
Probabilistic Trace Expressions.

Probabilistic Trace Expressions (PTEs) are an extension of Trace Expressions
with probabilities associated with event types (Section 7.3). PTEs are more
expressive than HMM, deterministic �nite state machines and linear time
temporal logic, being able to model more than context free languages. Besides
sketching the Probabilize algorithm for transforming trace expressions into
PTEs in Section 7.3.2,

1. we use PTEs to model the probabilistic behaviour of the system un-
der observation, possibly starting from a HMM and then re�ning or
extending it (Section 7.4.1);

2. we show how – by applying the rules de�ning the operational semantics

1http://www.runtime-verification.org/.

80

http://www.runtime-verification.org/

7 Probabilistic Trace Expressions

of PTEs – we obtain the same results of the forward algorithm presented
in (Stoller et al., 2011) (Section 7.4.2);

3. by exploiting the algorithm presented in Section 4.5 and the Probabilize
algorithm in cascade, we use PTEs also to model the linear time temporal
properties that we want to verify at runtime;

4. by joining the two representations obtained in steps 1 and 3 above using
the ∧ conjunction operator natively provided by PTEs, we obtain for
free a way to verify satisfaction of linear time temporal properties in
presence of observation gaps (Section 7.4.3).

Considering the notion of Hidden Markov Model (HMM) presented in
Section 3.8, we can now present a running example which will make the
presentation of the chapter contents easier. We use the running example
presented in (Stoller et al., 2011), where a planetary rover mission is modeled.
The rover hosts two generic instruments, A and B, and all the events generated
by the rover are recorded on a log �le. Stoller and colleagues consider four
di�erent kinds of events, inspired by Barringer et al. (Barringer et al., 2010):

• command (cmd in the HMM �gure), the command submitted to the rover;

• dispatch (disp), the dispatch of the command from the rover to the
instrument;

• success (succ), the success of the command on the instrument;

• fail (fail), the failure of the command on the instrument.

All these events are characterized by three parameters: the instrument id (a or
b), the issued command (start or reset), and a time stamp indicating when the
event occurred. When the rover receives a command, it reports the informa-
tion to the logger and sends the command to the relevant instrument. Once
received the command, the instrument issues a dispatch event to the logger
and then executes the command. If the execution is successful (resp. fails), a
corresponding success (resp. failure) event is reported to the logger. It is also
possible that the command is simply lost for some reason and neither a success
nor a fail occurs. All these events have some probability to be observed, and
the chance to move from one state to another is also modeled by a probability.
Figure 7.1 represents a HMM inspired to the rover example, where

• S = {s1, s2, s3};

• A1,1 = A1,3 = 0;A1,2 = 1;
A2,1 = 0.07;A2,2 = 0;A2,3 = 0.93;
A3,1 = 1;A3,2 = A3,3 = 0;

• V = {C,D, S, F } (C stands for cmd, D for disp, etc);

• b1(C) = 1;b1(D) = b1(S) = b1(F) = 0;
b2(D) = 1;b2(C) = b2(S) = b2(F) = 0;
b3(C) = b3(D) = 0;b3(S) = 0.97;b3(F) = 0.03;

81

7 Probabilistic Trace Expressions

Figure 7.1 . An example of HMM (from (Stoller et al., 2011)).

• π1 = 1,π2 = π3 = 0 (not shown in the �gure).

We can now introduce the concept of runtime veri�cation with state estim-
ation.

7.2 Runtime Veri�cation with State Estimation

Given a trace (possibly with gaps), in (Stoller et al., 2011) Stoller et al. propose
an approach to compute the probability that an LTL temporal property ϕ

(Pnueli, 1977) is satis�ed by a system modeled by a HMM H , given that obs =
O1,O2, ...,Ot have been observed. More formally, they evaluate Pr (ϕ | obs,H)
by applying the following steps:

1. learn the HMMH from a given set of traces without gaps, using standard
HMM learning algorithm;

2. generate the deterministic �nite state machine (DFSM) corresponding
to ϕ;

3. generate a monitor combining H and the DFSM to check the sequence
obs .

Step 1 falls outside the boundaries of their investigation, and in the sequel
we will disregard how the HMM has been created as well. For instance, a
possible way to achieve this could be using the Python library hmmlearn2

(Rabiner, 1990).

7.3 Probabilistic Trace Expressions

A probabilistic trace expression (PTE) is a trace expression where event types
have a probability associated with them.

2https://hmmlearn.readthedocs.io/en/latest/

82

https://hmmlearn.readthedocs.io/en/latest/

7 Probabilistic Trace Expressions

Example 3. We present the PTE corresponding to the rover example introduced
in Section 3.8. First of all we must de�ne the event types. Considering the com-
mands used in the model, we have the event type cmd = { command(Inst, Comm,
TS) such that Inst ∈ {a, b}, Comm ∈ {start, reset}, TS a time stamp in the range
0...3 }, and in a similar way the event type disp = { dispatch(Inst, Comm, TS) },
succ = { success(Inst, Comm, TS) } and fail = { fail(Inst, Comm, TS) }. The result-
ing trace expression can be written in two equivalent (from the PTE semantics
viewpoint) ways:

τs1 = cmd[1]:τs2
τs2 = disp[0.07]:τs1∨disp[0.93]:τs3
τs3 = succ[0.97]:τs1∨f ail[0.03]:τs1

and
τ ′init = cmd[1]:τ ′s2
τ ′s1 = cmd[0.07]:τ ′s2
τ ′s2 = disp[1]:(τ

′
s1∨τ

′
s3)

τ ′s3 = succ[0.9021]:τ
′
s1∨f ail[0.0279]:τ

′
s1

The trace expression in the �rst form tells us, for example, that the probability
of the protocol to reach τs1 starting from τs2 and having observed disp is 0.07
while the probability to reach τs3 starting from τs2 and having observed disp

is 0.93 (second equation of the �rst formulation). To make this information
explicit, the transition from state s2 to states s1 and s3 in the HMM has been
modeled by τs2 = disp[0.07]:τs1∨disp[0.93]:τs3 , introducing non-determinism.
While in a non probabilistic setting τs2 = disp:τs1∨disp:τs3 would be equivalent
to τs2 = disp:(τs1∨τs3) and the second version would be de�nitely preferred, as –
besides being more readable and compact – it is deterministic, in a probabilistic
setting it would cause us to lose precious information on the probability to
move in some state, given some observed event.

The second version overcomes this problem by propagating – via multi-
plication – the di�erent probabilities associated with disp in s2

′ to the states
s1
′ and s3

′ that can be reached from s2
′ (second and fourth equation of the

second formulation). With this second form, we gain determinism at the price
of adding an initial state τinit for each state whose initial probability is not
zero, and of losing the one-to-one clear correspondence with the HMM. As
an example, in the fourth equation, understanding that succ[0.9021] comes
from the probability 0.97 associated with observing succ in state s3′ times the
probability 0.93 of having reached s3

′ from s2
′ is not immediate.

Given that a structure-driven transformation from the �rst form to the
second can be implemented in time linear with the trace expression length, we
adopt the �rst form for presentation purposes, since it is closer to the HMM,
but we use the second one in the implementation, since it is more e�cient.

Like a “normal” trace expression, a PTE τ can be seen as the current state of
a protocol that started in some initial state τinit and reached τ after n events
O1...On took place, that moved τinit to τ through intermediate states τq1, τq2,
... , τqn = τ . If we denote with τ O

→ τ ′ the transition from state τ to state τ ′
due to the event O taking place and being observed, we may write

83

7 Probabilistic Trace Expressions

τinit
O1
→ τq1

O2
→ τq2

O3
→ τq3...

On
→ τqn , where τqn = τ .

In order to properly manage probabilities, it is convenient to associate with
τ – in an explicit and easily computable way – the probability of the protocol
to have reached τ starting from τinit and having observed O1...On .

We de�ne a “PTE state” (simply “state” from now on) the triple consisting
of a trace expression τ , a sequence of events O1...On observed before reaching
τ , and the probability πτ that the protocol reached τ . We represent the state
with the notation 〈τ ,πtr ,O1...On〉.

In this work, we are interested in analyzing the protocol evolution in pres-
ence of observation gaps: the monitor driven by a PTE is aware that, in some
state τ , some event took place and hence the protocol must move one step
forward, but that event has not been correctly observed: the monitor perceived
a “gap”.

(pre�x)
〈ϑ [πe]:τ ,πtr ,obs〉

any
→ 〈τ ,πe ∗ πtr ,obs any(e)〉

e ∈ϑ

(or-l)
〈τ1,πtr ,obs〉

any
→ 〈τ ′1,π

′
tr ,obs any(e)〉

〈τ1∨τ2,πtr ,obs〉
any
→ 〈τ ′1,π

′
tr ,obs any(e)〉

(or-r)
〈τ2,πtr ,obs〉

any
→ 〈τ ′2,πtr2,obs any(e)〉

〈τ1∨τ2,πtr ,obs〉
any
→ 〈τ ′2,πtr2,obs any(e)〉

(and)
〈τ1,πtr ,obs〉

any
→ 〈τ ′1,πt1,obs any(e)〉 〈τ2,πtr ,obs〉

any
→ 〈τ ′2,πt2,obs any(e)〉

〈τ1∧τ2,πtr ,obs〉
any
→ 〈τ ′1∧τ

′
2,π
′
tr ,obs any(e)〉

π ′tr=f (πt1,πt2)

(shu�e-l)
〈τ1,πtr ,obs〉

any
→ 〈τ ′1,π

′
tr ,obs any(e)〉

〈τ1 |τ2,πtr ,obs〉
any
→ 〈τ ′1 |τ2,π

′
tr ,obs any(e)〉

(shu�e-r)
〈τ2,πtr ,obs〉

any
→ 〈τ ′2,π

′
tr ,obs any(e)〉

〈τ1 |τ2,πtr ,obs〉
any
→ 〈τ1 |τ ′2,π

′
tr ,obs any(e)〉

(cat-l)
〈τ1,πtr ,obs〉

any
→ 〈τ ′1,π

′
tr ,obs〉

〈τ1·τ2,πtr ,obs〉
any
→ 〈τ ′1 ·τ2,π

′
tr ,obs any(e)〉

(cat-r)
〈τ2,πtr ,obs〉

any
→ 〈τ ′2,π

′
tr ,obs any(e)〉

〈τ1·τ2,πtr ,obs〉
any
→ 〈τ ′2,π

′
tr ,obs any(e)〉

ε (τ1)

Figure 7.2 . Transition system for probabilistic trace expressions states.

The transition rules between states are shown in Figure 7.2 and follow the

84

7 Probabilistic Trace Expressions

pattern of the rules de�ned for trace expressions, with modi�cations for taking
care of the probability propagation and of observed events including gaps. The
rules for ε are the same as for normal trace expressions.

In Figure 7.2 the use of any and any(e) allows us to model the transition in
the case that an event has been observed and in the case an observation gap
took place, using the same rule. In fact, any ∈ {e, gap} and if any == e then
any(e) == e; if any == gap then any(e) == gap(e).

If any == e , then e has been observed, the arrow modeling the state trans-
ition function

any
→ is actually labeled with e , and e is concatenated with the

previously observed events, obs; if any == gap, then a gap took place, the ar-
row

any
→ is labeled with gap, and gap(e), meaning that a gap took place, and that

it could be �lled with event e , is concatenated with the previously observed
events. Di�erently from (Stoller et al., 2011), to perform runtime veri�cation
using PTEs, we need that each gap represents one single unobserved event: if
we have a sequence of three unobserved events, we must have three di�erent
gaps in the observed trace. If, in the real system, this one event-one gap cor-
respondence cannot be achieved, we can estimate the number of unobserved
events that took place in a time slot T by computing the average rate of the
event generationG , and insertingT ∗G gaps in the event trace. As an example,
if the monitor pauses for 3 seconds and the average events generation rate is 4
events for second, the trace will have 12 consecutive gaps corresponding to
what happened in the time slot T .

More in details, the meaning of the transition rules is the following:

(pre�x) If (1) the current state of the protocol is modeled by the trace
expression τcurrent = ϑ [πe]:τ , and (2) the probability to have reached
τcurrent after having observed obs events or gaps is πtr , and (3.1) an event
e having event type ϑ is observed, then the new protocol state is τ , with
probability πe ∗ πtr (the probability to observe an event having type ϑ
times the probability of τcurrent) and e is concatenated to the observed
events, which become obs e . If in the third step a gap is observed, we have
(3.2) instead: a gap is observed, which can be �lled with any event e ∈ ϑ ,
then the new protocol state is τ with probability πe ∗ πtr , and gap(e) is
added to the observed events, which become obs gap(e).

(or-l), (or-r) If, upon observation of any, either 〈τ1,πtr ,obs〉 or 〈τ2,πtr ,obs〉
can move into some state γ , then 〈τ1∨τ2,πtr ,obs〉 can move into γ . If both
〈τ1,πtr ,obs〉 and 〈τ2,πtr ,obs〉 can move, only one of them will do.

(and) If, upon observation of any, both 〈τ1,πtr ,obs〉 and 〈τ2,πtr ,obs〉 can
move into 〈τ ′1,πt1,obs any(e)〉 and 〈τ ′2,πt2,obs any(e)〉 respectively, both
branches of the ∧ operator will move one step forward, reaching τ ′1∧τ ′2
through observation of obs any(e). The probability of reaching this state
is a function f of the probabilities associated with the states reached
in the two branches, πt1 and πt2 respectively. It might be the average
between πt1 and πt2, the minimum between them if we want to adopt a
cautious approach, the maximum if we adopt an optimistic approach. To

85

7 Probabilistic Trace Expressions

be as general as possible, we leave f unspeci�ed in the presentation. We
instantiate it with the minimum in the implementation of the transition
system discussed in Section 7.5.

(shu�e-l), (shu�e-r) If, upon observation of any, 〈τ1,πtr ,obs〉 can move
into 〈τ ′1,π ′tr ,obs any(e)〉, then the trace expression where τ1 is the left
branch of the | operator, and τ2 is the right branch, can move into
〈τ ′1 |τ2,π

′
tr ,obs any(e)〉 (the left branch “makes one step”, the right one is

kept). A similar rule holds when the right branch can move and the left
one is kept. If both 〈τ1,πtr ,obs〉 and 〈τ2,πtr ,obs〉 can move, only one of
them will do.

(cat-l) If, upon observation of any, 〈τ1,πtr ,obs〉 can move into 〈τ ′1,π ′tr ,obs〉,
then the concatenation of τ1 and τ2, 〈τ1·τ2,πtr ,obs〉, can move into 〈τ ′1 ·τ2,
π ′tr ,obs any(e)〉.

(cat-r) If τ1 is ϵ or it “includes” ϵ and hence can “terminate” (for example,
ϵ∨τ3) and, upon observation of any, τ2 can move into τ ′2 with probability
π ′tr , then the concatenation of τ1 and τ2, 〈τ1·τ2,πtr ,obs〉, can move into
〈τ ′2,π

′
tr ,obs any(e)〉. Note that (cat-l) and (cat-r) are not mutually exclus-

ive, as a trace expression can both “terminate” and evolve, like ϵ∨τ3. In
this case, either (cat-l) or (cat-r) is applied.

7.3.1 Non Determinism in State Transitions

The state transition function
any
→ is non deterministic: one state can move into

more than one state for many di�erent reasons.
Let us consider the cmd event type introduced at the beginning of

this section. The transitions below can take place starting from the state
〈cmd[0.3]:τ , 0.2,obs〉 when an observation gap occurs.

• 〈cmd[0.3]:τ , 0.2,obs〉
gap
→ 〈τ , 0.06,obs gap(command(a, start , 0))〉

• 〈cmd[0.3]:τ , 0.2,obs〉
gap
→ 〈τ , 0.06,obs gap(command(b, start , 0))〉

• 〈cmd[0.3]:τ , 0.2,obs〉
gap
→ 〈τ , 0.06,obs gap(command(a, reset , 0))〉

• 〈cmd[0.3]:τ , 0.2,obs〉
gap
→ 〈τ , 0.06,obs gap(command(b, reset , 0))〉

• 〈cmd[0.3]:τ , 0.2,obs〉
gap
→ 〈τ , 0.06,obs gap(command(a, start , 1))〉

• ... plus 11 more transitions.

As another example, le us consider again the event type cmd de�ned above
and the state

〈cmd[0.75]:τ1∨cmd[0.25]:τ2, 0.4,obs〉
If command(a, start , 3) (abbreviated in c(a, s, 3) for presentation purposes) is
observed, both branches of the choice in cmd[0.75]:τ1∨cmd[0.25]:τ2 are valid,
leading to the two transitions below.

86

7 Probabilistic Trace Expressions

• 〈cmd[0.75]:τ1∨cmd[0.25]:τ2, 0.4,obs〉
c(a,s,3)
→ 〈τ1, 0.3,obs c(a, s, 3)〉

• 〈cmd[0.75]:τ1∨cmd[0.25]:τ2, 0.4,obs〉
c(a,s,3)
→ 〈τ2, 0.1,obs c(a, s, 3)〉

If, starting from 〈cmd[0.75]:τ1∨cmd[0.25]:τ2, 0.4,obs〉, a gap is observed, the
two sources of nondeterminism (the �rst due to the gap that can be �lled
with many events matching the expected event type, and the second due
to the nondeterministic choice in the trace expression) combine together,
generating 32 possible transitions. Other sources of nondeterminism in the
trace expression are due to the shu�e and the concatenation operators, de�ned
by two transitions rules each.

(state-to-set)
γ

any
→ γ1 γ

any
→ γ2 ... γ

any
→ γn

γ
any
→γ {γ1,γ2, ...,γn}

(set-to-set)
γ1

any
→γ Γ1 γM

any
→γ Γ2 ... γn

any
→γ Γn

{γ1,γ2, ...,γn}
any
� Γ1 ∪ Γ2 ∪ ... ∪ Γ1

(closure)
Γ0

O1
� Γ1

O2
� ... Γn−1

On
� Γn

Γ0
O1 ...On
� Γn

(closure-init)
{〈τ , 1,σ 〉}

O1 ...On
� Γn

τ
O1 ...On
� Γn

σ=empty sequence

Figure 7.3 . Rules for nondeterminism and transitive closure.

Figure 7.3 presents the rules for dealing with non determinism and for
introducing the notion of transitive closure of transitions:

(state-to-set) The function represented by→γ takes one PTE state γ , one
observed event or gap any, and returns the set of all the PTE states that
γ can reach via

any
→.

(set-to-set) The function represented by � takes one set of PTE states
{γ1,γ2, ...,γn}, one observed event or gap any, and returns the union of
the sets of PTE states that each γi ∈ {γ1,γ2, ...,γn} can reach via

any
→γ .

(closure) We use� to denote the transitive closure of� by putting the
sequence of observed events on top of the arrow.

(closure-init) Finally, a PTE τ can evolve into any state γ ∈ Γn after obser-
vation of O1...On , if the PTE state 〈τ , 1,σ 〉 can.

Example 4. Starting from the PTE τs1 used as running example, we have:

τs1
cmd disp gap
�

{〈τs2 , 0.07, cmd disp gap(cmd)〉,

〈τs1 , 0.9021, cmd disp gap(succ)〉,

87

7 Probabilistic Trace Expressions

〈τs1 , 0.0279, cmd disp gap(f ail)〉}

because

〈τs1 , 1, []〉
cmd
→ {〈τs2 , 1, cmd〉}

disp
� {〈τs1 , 0.07, cmd disp〉, 〈τs3 , 0.93, cmd disp〉}

gap
�

{〈τs2 , 0.07, cmd disp gap(cmd)〉,

〈τs1 , 0.9021, cmd disp gap(succ)〉,

〈τs1 , 0.0279, cmd disp gap(f ail)〉}

7.3.2 From Trace Expressions to Probabilistic Trace Expressions

Since PTEs are an extension of standard trace expressions, we need a “Probab-
ilize” algorithm to convert a standard trace expression into a probabilistic one.
This allows us to combine “probabilized” standard trace expression together
with probabilistic ones, opening important possibilities as discussed in Section
7.4.3 and ensuring backward compatibility.

In this section we provide a sketch for the “Probabilize” algorithm, that
is under implementation. Given a non probabilistic trace expression τnp , we
can obtain its corresponding probabilistic version Probabilize(τnp) by adding
probabilities parameters to all the event types that appear in τnp . To achieve
this result, we have to de�ne an algorithm that operates on τnp following its
structure and that, when there are more than one possible moves from the
current state to the next ones due to observability of di�erent event types,
shares the probability among these event types following some probability
distribution, the uniform one in the simplest case. For instance, if the algorithm
is currently analyzing the state cmd : τs1∨disp : τs2 and if it is using a uniform
distribution probability, it must extract the set of event types that can lead
to a new state {cmd,disp}, count them obtaining a number n (in this case
n = 2), and assign probability 1/n to each of them. In this case the resulting
probability is 0.5 and

Probabilize(cmd : τs1∨disp : τs2) = cmd[0.5] : τs1∨disp[0.5] : τs2
The shu�e operator, |, is the only operator maintaining information on the

past (when we consume a branch we preserve the other one in the new state).
It must be handled in a di�erent, and more careful, way, that we are currently
working out.

Since trace expressions can be cyclic terms, the Probabilize algorithm must
take care of cycles. This issue can be addressed by exploiting coinduction.
As an example, the use of the SWI-Prolog coinduction library allows to cope
with in�nite terms without entering into loops, and given that we model trace
expressions as Prolog terms, we will take advantage of this feature as we did
in the rest of the thesis.

88

7 Probabilistic Trace Expressions

7.4 From Hidden Markov Models to Probabilistic Trace Expressions

Writing from scratch a PTE where probabilities associated with event types
are consistent with their intended meaning and with the probability properties
is not an easy task. Besides needing a deep knowledge of modeled system,
the developer would also need a means to ensure that, for example, a PTE
like cmd[0.9] : τs1∨disp[0.8] : τs2 is recognized as wrong, since there are two
mutually exclusive branches and the sum of their probabilities is greater than
one. While this error is trivial and can be easily catched and corrected, if the
PTE grows in size and complexity a manual development becomes more and
more error-prone.

A good practice in engineering new software applications is to reuse well
established approaches as much as possible. Even if we want to model probabil-
istic systems using an extension of trace expressions, which is more expressive
than HMM and deterministic �nite state machines, this does not prevent us
from starting from a less expressive but widely used formalism like HMM in
order to extract useful information, and re�ne it if necessary.

If a HMM representing the behaviour of the modeled system exists, for
example because it has been learned using existing algorithms, we can use it
to generate the corresponding PTE in an automatic way. Once such PTE has
been obtained, we can modify it in order to model those features of the actual
system that could not be directly represented with a HMM.

7.4.1 The HMM2PTE Algorithm

Given a HMM H = 〈S,A,V ,B,Π〉, the algorithm to construct an equivalent
PTE is the following:

1. for each observation symbolvk ∈ V , generate the corresponding singleton
event type βk = {vk } (recall that trace expressions are de�ned on top of
event types and not of events);

2. for each i = 1..Ns , for each j = 1..Ns , for each k = 1..Nv , if Ai, j , 0
then τsi =

∨
j=1..Ns ,k=1..Nv βk [Ai, j ∗ bi (vk)]:τsj 3. If, for some given i ,

there exists only one j such that Ai, j is di�erent from 0, then τsi =

βk [Ai, j ∗bi,k]:τsj . If, for some given i , all Ai, j are equal to 0, then τsi = ϵ .

As an example, the HMM2PTE algorithm translates the HMM presented in
Section 3.8 into the PTE presented in Section 7.3.

7.4.2 Forward Algorithm for Probabilistic Trace Expressions

Let us consider the set of PTEs states

Γ0 = {〈τs1 ,πs1 ,σ 〉, 〈τs2 ,πs2 ,σ 〉, ..., 〈τsN ,πsN ,σ 〉}

3By
∨
h=1..m τh we mean the conjunction via the ∨ operator of the trace expressions τ1, ...,τm .

The notation can only be used ifm ≥ 2.

89

7 Probabilistic Trace Expressions

where each τsi corresponds to a state si in the HMM H and has been obtained
applying the translation algorithm. πs1 is the initial probability of s1, according
to H . If πs1 = 0, the corresponding state is discarded.

We remind that – given a correct HMM – the sum of the elements Ai, j of
the ith row of A must be one, as Ai, j represents the probability to reach state
sj at time t + 1 starting from state si at time t , and the total probability to move
to some next state must be 1: ΣNs

j=1Ai, j = 1 for each i .
We also remind that αt (i) = Pr (O1,O2, ...,Ot ,qt = si |H), i.e., the probability

that the �rst t observations yieldO1,O2, ...,Ot and thatqt is si , given the model
H . The de�nition of α according to the forward algorithm presented in (Stoller
et al., 2011) (see Section 3.8 for further information) is the following.
Base case:

α1(j) = πjbj (O1) for 1 ≤ j ≤ Ns

Recursive case:
αt+1(j) = (Σi=1..Nsαt (i)Ai, j)bj (Ot+1) for 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ Ns

If Γ0
O1 ...Ot−1
� Γt−1, we can consider all the states in Γt−1 of the form

〈τsi ,π ,O1...On−1〉, namely those states whose trace expression is τsi . We denote
with Γt−1(τst) = {〈τst ,π ,O1...Ot−1〉 ∈ Γt−1}.

Theorem 2. If Γ0
O1 ...Ot
� Γt , then αt (j) = Σ 〈τsj ,πj ,O1 ...Ot 〉∈Γtπj (for 1 ≤ j ≤ Ns).

First, we give the intuition behind the theorem by means of our running
example, then we propose a proof sketch.

Let us suppose that we want to compute the probability that, after observing
command(a, start, 0) (C in the sequel), dispatch(a, start, 1) (D in
the sequel), fail(a, start, 2) (F in the sequel), the system is in state s3.

We have to compute Γ0
O1 ...Ot−1
� Γt−1 �rst, namely Γ0

CD
� Γt−1.

Γ0 = {〈τs1 , 1,σ 〉}
C
� {〈τs2 , 1,C〉}

D
� {〈τs1 , 0.07,CD〉, 〈τs3 , 0.93,CD〉}

Once reached {〈τs1 , 0.07,CD〉, 〈τs3 , 0.93,CD〉} we have to limit the last trans-
ition, tagged with F , to those states whose trace expression corresponds to s3,
namely τs3 .

{〈τs1 , 0.07,CD〉, 〈τs3 , 0.93,CD〉}(τs3) = {〈τs3 , 0.93,CD〉}
F
� {〈τs1 , 0.0279,CDF 〉}

It turns out that αCDF (3) = probability to observe CDF , with F observed in
state s3, should be 0.0279. We use CDF as subscript for α for sake of clarity.
Let us compute the same value using the forward algorithm adapted for PTEs.
The base case leads to the following computation:

αC (1) = π1 ∗ b1(C) = 1 ∗ 1 = 1

αC (2) = π2 ∗ b2(C) = 0 ∗ 0 = 0

αC (3) = π3 ∗ b3(C) = 0 ∗ 0 = 0

The �rst recursive step leads to the following computation (we omit some
details and keep the result):

αCD (1) = (Σi=1..NsαC (i)Ai,1)b1(D) = 0

90

7 Probabilistic Trace Expressions

αCD (2) = (Σi=1..NsαC (i)Ai,2)b2(D) = 1 ∗A1,2 ∗ b2(D) = 1 ∗ 1 ∗ 1 = 1
αCD (3) = (Σi=1..NsαC (i)Ai,3)b3(D) = 0

The third recursive step leads to:

αCDF (1) = (Σi=1..NsαCD (i)Ai,1)b1(F) = 0

αCDF (2) = (Σi=1..NsαCD (i)Ai,2)b2(F) = 0
αCDF (3) = (Σi=1..NsαCD (i)Ai,3)b3(F) = αCD (2) ∗A2,3 ∗ b3(F) = 1 ∗ .97 ∗ .03 = .0279

Let us consider the set of PTEs states Γ0 = {〈τs1 ,πs1 ,σ 〉, 〈τs2 ,πs2 ,σ 〉, ...,

〈τsN ,πsN ,σ 〉}, where each τsi corresponds to a state si in the HMM H and has
been obtained applying the translation algorithm. πs1 is the initial probability
of s1, according to H . If πs1 = 0, the corresponding state is discarded.

Proof Sketch. By induction on t . In the demonstration we �x the �nal state
qt = si and we name it slast to avoid confusion w.r.t. the indexes of the ob-
served events and the state identi�ers in the HMM and in the PTEs.

Base case. According to the forward algorithm, when t = 1, α1(last) = πlast ∗
blast (O1).
According to our theorem,
if Γ0(τslast)

O1
� Γ1,

then α1(last) = Σ 〈τslast ,πlast ,O1 〉∈Γ1πlast
namely, α1(last) is the probability that starting from τslast some state has been
reached (we are not interested in knowing which one) after observing O1. If
more than one state can be reached from τslast after observing O1, we sum the
probabilities associated with those states.

Γ0(τslast) = {〈τslast ,πslast ,σ 〉} where πslast is the initial probability of slast
according to the HMM H .

Let us de�ne β1 = {O1}. By construction,τslast =
∨

j=1..Ns ,k=1..Nv βk [Alast, j∗

blast (vk)]:τsj and hence, after observation ofO1, only those or-branches whose
event type is β1 and that lead to some state τsj with probabilityAlast, j∗blast (O1)

are kept.
Each of these branches generates one state
〈τsj ,πslast ∗Alast, j ∗ blast (O1),O1〉 ∈ Γ1 because πslast associated with
τslast in Γ0 is multiplied – for the semantics of the pre�x operator in PTEs,
rule “pre�x” in Figure 7.2 – with Alast, j ∗ blast (O1) which is the probability
associated with β1 in β1[Alast, j ∗ b1(O1)]:τsj .

Given that ΣNs
j=1Alast, j = 1, by summing πslast ∗ Alast, j ∗ blast (O1) for all

states sj that can be reached by observing O1 in slast we obtain ΣNs
j=1(πslast ∗

Alast, j ∗ blast (O1)) = (πslast ∗ blast (O1)) ∗ (Σ
Ns
j=1Alast, j) = πslast ∗ blast (O1) ∗ 1.

This demonstrates that Σ 〈τsj ,πj ,O1 〉∈Γ1πj has the same value as α1(last) =
πlast ∗ blast (O1) according to the forward algorithm.

91

7 Probabilistic Trace Expressions

Inductive step.
We assume that

αt (j) =

(Σi=1..Nsαt−1(i)Ai, j)bj (Ot) for 1 ≤ t ≤ T − 2 and 1 ≤ j ≤ Ns =

Σ 〈τsj ,πj ,O1 ...Ot 〉∈Γtπj (for t ≥ 0 and 1 ≤ j ≤ Ns)

We have to demonstrate that
αt+1(j) =

(Σi=1..Nsαt (i)Ai, j)bj (Ot+1) for 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ Ns =

Σ 〈τsj ,πj ,O1 ...Ot+1 〉∈Γt+1πj (for t ≥ 0 and 1 ≤ j ≤ Ns)

Also in this case we �x the �nal state we expect to reach, slast (last is the t +
1th state), and we demonstrate thatαt+1(last) = Σ 〈τslast ,πlast ,O1 ...Ot+1 〉∈Γt+1πlast .

From the theorem hypothesis, we have that Γ0
O1 ...Ot+1
� Γt+1. Since we denote

the states belonging to Γt as τslast , we can also say that Γt (τslast)
Ot+1
� Γt+1.

Let us suppose that slast in Γt can be reached from slast−1, ..., slast−k in Γt−1
after observing Ot .

This means that Γt−1 contains the following states

〈τslast−1 ,πlast−1,O1...Ot−1〉

〈τslast−2 ,πlast−2,O1...Ot−1〉

...

〈τslast−k ,πlast−k ,O1...Ot−1〉

From the way we build the transition Γt−1
Ot
� Γt , Γt (τslast) contains the

following states

〈τslast ,πlast−1 ∗Alast−1,last ∗ blast−1(Ot),O1...Ot 〉

〈τslast ,πlast−2 ∗Alast−2,last ∗ blast−2(Ot),O1...Ot 〉

...

〈τslast ,πlast−k ∗Alast−k,last ∗ blast−k (Ot),O1...Ot 〉

and from the way we build the transition Γt (τslast)
Ot+1
� Γt+1, if we sup-

pose that observing Ot+1 in τslast leads to τslast+1 , ..., τslast+h , Γt+1 contains the
following states

〈τslast+1 ,πlast−1 ∗Alast−1,last ∗ blast−1(Ot) ∗Alast,last+1 ∗ blast (Ot+1),O1...Ot+1〉

〈τslast+1 ,πlast−2 ∗Alast−2,last ∗ blast−2(Ot) ∗Alast,last+1 ∗ blast (Ot+1),O1...Ot+1〉

...

〈τslast+1 ,πlast−k ∗Alast−k,last ∗ blast−k (Ot) ∗Alast,last+1 ∗ blast (Ot+1),O1...Ot+1〉

〈τslast+2 ,πlast−1 ∗Alast−1,last ∗ blast−1(Ot) ∗Alast,last+2 ∗ blast (Ot+1),O1...Ot+1〉

〈τslast+2 ,πlast−2 ∗Alast−2,last ∗ blast−2(Ot) ∗Alast,last+2 ∗ blast (Ot+1),O1...Ot+1〉

92

7 Probabilistic Trace Expressions

...

〈τslast+2 ,πlast−k ∗Alast−k,last ∗ blast−k (Ot) ∗Alast,last+2 ∗ blast (Ot+1),O1...Ot+1〉

...

〈τslast+h ,πlast−1 ∗Alast−1,last ∗ blast−1(Ot) ∗Alast,last+k ∗ blast (Ot+1),O1...Ot+1〉

〈τslast+h ,πlast−2 ∗Alast−2,last ∗ blast−2(Ot) ∗Alast,last+h ∗ blast (Ot+1),O1...Ot+1〉

...

〈τslast+h ,πlast−k ∗Alast−k,last ∗ blast−k (Ot) ∗Alast,last+h ∗ blast (Ot+1),O1...Ot+1〉

The probabilities of the states in Γt+1 that can be reached from τslast by
observing Ot+1 have the form πlast−i ∗Alast−i,last ∗blast−i (Ot) ∗Alast,last+j ∗

blast (Ot+1) with i = 1..k, j = 1..h.
We can express the formula as

blast (Ot+1) ∗ Σ
h
j=1(Alast,last+j ∗ Σ

k
i=1(πlast−i ∗Alast−i,last ∗ blast−i (Ot)))

and we must demonstrate that this formula is equal to

αt+1(last) =

(Σki=1αt (last − i)Alast−i,last)blast (Ot+1)

The formula holds if

Σki=1(πlast−i ∗Alast−i,last ∗ blast−i (Ot))

is equal to
Σki=1αt (last − i)Alast−i,last

as the external sum Σhj=1Alast,last+j gives 1, since it is the total probability that
a move is made from τlast to some other state.
The equation

αt (last − i) = (πlast−i ∗ blast−i (Ot))

holds if
πlast−i = Σi=1..Nsαt (i)Ai,last−i

and, �nally, this last equation holds from the way we propagate probabilities
from global states to global states.

7.4.3 Satisfying LTL Properties when Gaps Are Observed

Satisfaction of LTL properties in presence of observation gaps can be veri�ed
in a natural and elegant way thanks to

• the possibility to represent an LTL property as a standard trace expression
(Section 4.5),

93

7 Probabilistic Trace Expressions

• the possibility to transform a standard trace expression into a probabilistic
one thanks to the Probabilize algorithm introduced in Section 7.3.2, and

• the “and” operator, ∧, modeling the fact that the (probabilistic) trace
expressions in the two branches must perform the same transitions. From
an set-theoretic viewpoint, ∧ models the intersection of the event traces
represented by the two branches it joins.

Let us identify with τHMM the PTE representing a HMM, and with τϕ the
standard trace expression representing the temporal property ϕ to be veri�ed.

The PTE τHMM∧Probabilize(τϕ) models the intersection of the languages
recognized by the HMM and ϕ: by making the intersection of the states in
τHMM with those in Probabilize(τϕ)we automatically constrain the evaluation
process to those traces produced by the HMM that respect ϕ.

7.5 Implementation and Experiments

We implemented all the algorithms presented in this chapter, apart from the
“Probabilize” one which is under development, using SWI-Prolog. Since we
are interested in applying the Probabilize algorithm to a trace expression
equivalent to a LTL property ϕ, it is enough using a simpli�ed version of
the algorithm, easier to implement, because the trace expression τϕ does not
contain the shu�e operator by construction (Chapter 4). The corresponding
translation thus can be achieved as presented in Section 7.3.2, because we have
not to consider any special cases.

PTEs can be implemented in SWI-Prolog exactly as normal trace expressions
(Section 14.2).

Thanks to Prolog’s rule-based, declarative interpretation, the rules de�ning
trace expressions operational semantics have a one-to-one correspondence
with Prolog clauses: backtracking and “all-solutions” predicates are powerful
tools to deal with the generation of multiple PTE states, when gaps introduce
non determinism (set-to-set rule). Finally, as we already anticipated, the SWI-
Prolog coinduction library allows us to manipulate cyclic terms avoiding loops
in the execution.

Events can be observed as an online stream while they are generated by
the system (online RV), or can be recorded on a log �le and then inspected
(o�ine RV). In both scenarios there may be gaps, due to di�erent reasons. In
o�ine RV, gaps might be caused by event sampling, as usually done to reduce
the monitor workload. In online RV, a gap indicates lack of information (a
lost message, event or perception); in this case, the absence of information is
related to technical constraints of the system or of the monitor observation
capabilities rather than to optimization purposes.

The set-to-set semantic rule generates a set of states each time it is applied.
Even though for normal trace expressions it is enough that SWI-Prolog main-
tains the only one current state (Section 14.2), for PTEs SWI-Prolog needs to
maintain the set of current states in its local knowledge base (as we have seen
this is due to the presence of gaps).

94

7 Probabilistic Trace Expressions

Unfortunately, a rule like set-to-set su�ers from state space explosion, in
particular when there are many sources of non determinism. Each time a gap
takes place, the monitor must make guesses on the possible actual events
that the gap represents and save all the states generated by these guesses.
A possibly huge logical tree-like structure with states as nodes, and moves
from states to states as edges, represents these open possibilities. If the RV
takes place online, the exploration of this logical structure should follow a
breadth-�rst strategy (more space needed but possibly less time required to
recognize that the trace is not compliant with the expected behaviour), as the
�nal trace of events is unknown and the levels of the structure are generated
and explored at the same time. When, instead, a log �le is analyzed o�ine,
the trace in the log is already complete and the logical tree-like structure can
be explored, looking for violations, following a depth-�rst search (less space
needed, but the violation could be discovered after exploring all the structure).

7.6 Discussion

In this chapter we addressed the presence of gaps in observed traces and the
need to estimate the probability that the (incomplete) traces satisfy some LTL
properties, when the system is modelled by a PTE. Although PTEs have a
higher potential expressive power than HMM and LTL, being able to express
traces like anbncn , in this work we start from a HMM of the real system and
generate an equivalent PTE from it, which of course is as expressive as the
HMM it originates from. This is a safe approach to generate a PTE consistent
with the known probability distribution of events, which can then be re�ned
in such a way that its expressiveness is fully exploited. In Chapter 10 we are
going to present some more examples of possible uses of this probabilistic
extension.

95

Part IV

Engineering Agent Interaction Protocols

This part of the thesis focuses on the use of the trace expression formalism to
represent Agent Interaction Protocols (AIP). Chapter 8 focuses on the issues we
can encounter when we de�ne and verify agent interaction protocols. Chapter
9 and 10 present and solve the problem of how to decentralize the runtime
veri�cation of an agent interaction protocol without and with uncertainty in
the messages, respectively. Finally, Chapter 11 puts the basis on how two trace
expressions representing agent interaction protocols can be compared. This
is obtained through the de�nition of a conformance relation among di�erent
speci�cations on di�erent domains.

96

8 Issues with Agent Interaction Protocols

“Much unhappiness has come into the world
because of bewilderment and things left unsaid.”

- Fyodor Dostoyevsky

Interaction Protocols are fundamental elements to provide the en-
tities in a system, be them actors, agents, services, or other commu-
nicating pieces of software, a means to agree on a global interaction
pattern and to be sure that all the other entities in the system ad-
here to it as well. Tagging some protocols as good ones and others
as bad is common to all the research communities where interac-
tion is crucial, and it is not surprising that some protocol features
are recognized as bad ones everywhere. In this chapter we analyze
the notion of good, bad and ugly protocols in the MAS community
and outside, and we explore the possibility that bad protocols are
not that bad, after all. In particular, we concentrate on the problem
of MAS monitoring under the assumption of partial observability:
even if the global protocol ruling theMAS is a good one, partial or no
observability of some events therein can make the actually monit-
orable protocol a bad one, with covert channels due to unobservable
events. An observability-driven protocol transformation algorithm
is presented, and its implementation and experiments with the trace
expression formalism are discussed.

The contents of this chapter are published in
(Ancona et al., 2018a)

97

8 Issues with Agent Interaction Protocols

8.1 Introduction

Interaction Protocols are a key ingredient in MAS as they explicitly represent
the agents expected/allowed communicative patterns and can be used either to
check the compliance of the agent actual behavior w.r.t. expected one (Alberti
et al., 2005; Baldoni et al., 2005a) or to drive the agent behavior itself (Ancona
et al., 2015a).

Interaction protocols are also crucial outside the MAS community: what we
name an “Agent Interaction Protocol”, is referenced as a “Choreography” in
the Service Oriented Computing (SOC) community (Papazoglou, 2003) and
as a “Global Type” in the multiparty session types one (Bettini et al., 2008;
Honda, Yoshida, and Carbone, 2008).

In the MAS community, AIPs describe interaction patterns characterizing
the system as a whole. This global viewpoint is supported by many formalisms
and notations such as AUML (Huget and Odell, 2004), commitment machines
and their extensions, the Blindingly Simple Protocol Language (BSPL) and its
Splee extension, the Hierarchical Agent Protocol Notation (HAPN)1, and of
course trace expressions (Chapter 4).

When moving from the speci�cation to the execution stage, the AIP must be
enacted by agents in the MAS: besides the global description of the protocol,
the “local” description of the AIP portion each agent is in charge of, is required
to run the AIP. The AIP enactment is usually left to Computer-Aided Software
Engineering tools that move from AIP diagrams directly into agent skeletons
in some concrete agent oriented programming language (Cossentino, 2005;
García-Ojeda, DeLoach, and Robby, 2009; Padgham and Winiko�, 2002), or
to algorithms that translate the AIP textual representation to some abstract,
intermediate formalism for modeling the local viewpoint (Casella and Mascardi,
2007; Desai et al., 2005b). Such intermediate formalisms are not perceived as
the main target of the research and no standardization e�ort has been put on
them.

In the SOC community, on the contrary, formalisms exist for modeling both
the global and the local perspectives. As observed by (Lanese et al., 2008),
WS-CDL2 follows an interaction-oriented (“global”) approach, whereas in
BPEL4Chor3 the business process of each partner involved in a choreography
is speci�ed using an abstract version of BPEL4: BPEL4Chor follows a process-
oriented (“local”) approach.

In the multiparty session types community, the main emphasis is on type-
checking aspects: the formalism used to represent global types is relevant,
as well as its expressive power, but even more relevant are the properties of
the “global to local” projection function w.r.t. type-safety issues (Deniélou and

1See Chapter 5 for further information on these formalisms.
2Web Services Choreography Description Language Version 1.0 W3C Candidate Recommend-

ation 9 November 2005, https://www.w3.org/TR/ws-cdl-10/.
3BPEL4Chor Choreography Extension for BPEL, http://www.bpel4chor.org/.
4Web Services Business Process Execution Language Version 2.0, OASIS Standard, 11 April

2007, http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

98

https://www.w3.org/TR/ws-cdl-10/
http://www.bpel4chor.org/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

8 Issues with Agent Interaction Protocols

Yoshida, 2012).
Whatever the research area, assumptions on the protocols are made which

allow them to be classi�ed as good, bad and ugly. Whereas the classi�cation
of ugly protocols may depend on the protocol purpose and on the formalism
used to express it, almost all the authors agree on tagging as “bad” the same
classes of protocols based on problems they might raise during the projection
and/or enactment stages.

Before going on with the presentation of what is a “good”, a “bad” and a
“ugly” protocol, we need to re-introduce brie�y the concept of projection of
an AIP, and we need to comment a little bit how our work is related with the
state of the art.

8.2 Projection of an Agent Interaction Protocol

With an AIP, we can represent the behaviour of each agent inside the system
globally. When AIPs are used for runtime veri�cation purposes, since we
have only one monitor checking the entire system, it is reasonable that all the
information collapses in the protocol representation (which encodes what all
agents can or cannot do). However, when we are interested in verifying at
runtime the compliance of the AIP with respect to an existent MAS, it can be
necessary to split up the workload among multiple monitors (trying to avoid
the bottleneck problem concerning the use of a single centralized one).

Starting from an AIP and an agent set, we can de�ne a project function Π

as the function returning the AIP’s local view with respect to an agent set
(Ancona et al., 2014, 2016). If we take, for instance, an AIP whose interaction
events involve the set of agents Aдs = {agent1, agent2, agent3}. We can use
the project function passing the protocol and the subset {agent1, agent3} in
order to obtain a local view of the protocol representing only the event traces
involving at least agent1 or agent3. It is important to note that the event traces
represented by the local AIP (LAIP) do not involve only the agents passed to
the project function. For example, if we have an event involving agent1 and
agent2, it would still be present in the projected AIP (since agent1 is involved).

The project function can be de�ned in the following way:

Π: AIP × P(Aдs) → AIP

where the second argument is the subset of agents onto which projection is
made.

The project function allows us to distribute the protocol among more monit-
ors instead of only one.

In the speci�c scenario of trace expressions, the projection function can be
rewritten as

Π : T × P(Aдs) → T

where T is the set of trace expressions.
For what concerns the contents of the thesis, the given high-level present-

ation is enough to understand the contributions; but, for further details, the

99

8 Issues with Agent Interaction Protocols

formal de�nition and computation of the projection function can be found in
(Ancona et al., 2014, 2016).

8.3 State of the art

To the best of our knowledge, MAS monitoring under partial or imperfect
observability has been addressed in the context of normative multi-agent or-
ganizations only, and by just a few works. Among them, (Alechina, Dastani,
and Logan, 2014) spun o� from (Bulling, Dastani, and Knobbout, 2013) and
shows how to move from the heaven of ideal norms to the earthly condition of
approximate norms. The chapter focuses on conditional norms with deadlines
and sanctions (Tinnemeier et al., 2009); ideal norms are those that can be
perfectly monitored given a monitor, and optimality of a norm approximation
means that any other approximation would fail to detect at least as many
violations of the ideal norm. Given a set of ideal norms, a set of observable
properties, and some relationships between observable properties and norms,
the chapter presents algorithms to automatically synthesize optimal approxim-
ations of the ideal norms de�ned in terms of the observable properties. Even
if the purpose of our work is in principle similar to that of (Alechina, Dastani,
and Logan, 2014; Bulling, Dastani, and Knobbout, 2013), the approaches used
to model AIPs are too di�erent – also in expressive power – to compare them.

A more recent work in the normative agents area is (Criado and Such,
2017) that proposes information models and algorithms for monitoring norms
under partial action observability by reconstructing unobserved actions from
observed actions.

The reconstruction process entails:

1. searching for the actions that have been performed by unobserved
agents; and

2. using the actions found to increase the knowledge about the state of the
world.

That chapter proposes an approach that complements ours. While we assume
to know in advance which events cannot be monitored, and we transform the
ideal protocol into a monitorable one based on this information, the authors of
(Criado and Such, 2017) “guess” the actions that the monitor could not observe,
but that must have taken place because of their visible e�ects.

Whereas we are not aware of proposals to monitor agent interactions using
commitment machines, BSPL, Splee, or HAPN under partial observability
assumptions, we could mention dozens of works tackling this problem outside
the MAS community.

Indeed, partial ability of monitors to observe events is a well studied prob-
lem in many contexts including command and control (Yukish et al., 1994)
and runtime veri�cation. In (Stoller et al., 2011) the authors address the prob-
lem of gaps in the observed program executions. To deal with the e�ects of

100

8 Issues with Agent Interaction Protocols

sampling on runtime veri�cation, they consider event sequences as observa-
tion sequences of a Hidden Markov Model (HMM), and use an HMM model
of the monitored program to �ll in sampling-induced gaps in observation
sequences, and extend the classic forward algorithm for HMM state estimation
to compute the probability that the property is satis�ed by an execution of
the program5. Similarly to (Criado and Such, 2017), that work complements
ours by estimating the likelihood of an event to occur, whereas we assume to
know that likelihood, and we transform the protocol – and hence the expected
sequence of observed events – based on this knowledge. Other works pursuing
the objective of suitably dealing with “lossy traces” in the runtime veri�cation
area are (Basin et al., 2012; Joshi, Tchamgoue, and Fischmeister, 2017).

8.4 The Good, the Bad and the Ugly

The Good. Let us consider the following interaction protocol expressed in
natural language:

1. Alice sends a whatsApp message to her mother Barbara asking her to
buy a book (plus some implausible excuse for not doing it herself, which
is not relevant for our work);

2. Barbara sends an email message to her friend Carol, responsible for the
Book Shop front end, to reserve that book;

3. Carol receives Barbara email and sends a whatsApp message to Dave,
the responsible of the Book Shop warehouse, to check the availability
of the book and order it if necessary;

4. Dave checks if the book is available in the warehouse;

a) if it is,
i. he sends a whatsApp message to Emily who is in charge for

physically managing the books and informing the clients if
they requests can be satis�ed immediately;

ii. Emily takes the book to the front end and sends a con�rmation
email to Barbara telling that the book is already there;

b) otherwise,
i. Dave sends an email to Frank, the point of contact for the

publisher of the required book, and orders it;
ii. Frank sends a con�rmation to Barbara via whatsApp telling

her that the book will be available in two days.

In Section 4.2.2, we introduced the concept of event types. Through event
types we can build our trace expressions on top of event sets instead of single
events. This kind of generality is very useful when we want to represent

5Similar to what we do in Chapter 7.

101

8 Issues with Agent Interaction Protocols

generic protocols involving any kind of event. In this chapter though, we are
interested in using the trace expression formalism to de�ne AIP6.

In particular, to make the contribution easier to understand, we consider
event types representing single interaction events7 (singleton event sets). In
the following, when we write a trace expression like aд1

msд
=⇒ aд2:τ , we are just

using a more compact syntax with respect to writing ϑ :τ with nϑo = {aд1 msд
=⇒

aд2}. In Chapter 6, we used a slightly di�erent notation for interaction events.
In the following, when we denote the interaction event aд1

msд
=⇒ aд2, it is

only a shortcut for ϑ , where nϑo = {send(aд1,aд2,msд)}. They are just two
di�erent ways of representing the same event; in this part of the thesis, since
we are approaching more closely AIPs, we opted only for a more compact way.

Since we are interested also in the communication means used by the agents
to communicate, we represent this information directly inside the interac-
tion event, for instance, we may have aд1

mns,cnt
=⇒ aд2 standing for “agent aд1

sends a message with content cnt via communication meansmns to agent aд2”.

P1 = alice
wa,buy
=⇒ barbara:barbara

em,r eserve
=⇒ carol:carol

wa,checkAvail
=⇒ dave:

(dave
wa,take2shop
=⇒ emily:emily

em,availNow
=⇒ barbara:ϵ ∨

dave
em,order
=⇒ frank:frank

wa,avail2Days
=⇒ barbara:ϵ)

P1 receives the unanimous appreciation whatever the research community.
In fact, two very intuitive properties are met:

1. apart from the �rst one, the message that each agent sends is a reaction
to the message it just received, and there is an evident cause-e�ect link
between two sequential messages;

2. in case some mutually exclusive choice must be made, the choice is up
to only one agent involved in the protocol, and hence it is feasible.

These good properties take di�erent names depending on the research
communities and on the authors. The �rst one is named, for example, “sequen-
tiality” (Castagna, Dezani-Ciancaglini, and Padovani, 2012), “connectedness for
sequence” (Lanese et al., 2008), “explicit causality” (Singh, 2011a); the second
“knowledge for choice” (Castagna, Dezani-Ciancaglini, and Padovani, 2012),
“blindness” (Desai and Singh, 2008), “local choice” (Ladkin and Leue, 1995),
“unique point of choice” (Lanese et al., 2008).

Meeting these two properties is closely related to the absence of covert
channels; they ensure that all communications between di�erent participants
are explicitly stated, and rule out those protocols whose implementation or
enactment relies on the presence of secret/invisible communications between
participants: a protocol description must contain all and only the interactions

6We are interested in protocols where the events are only interactions.
7We are interested in exploiting trace expressions as AIPs, thus our events will be always

agent interactions.

102

8 Issues with Agent Interaction Protocols

used to implement it (Castagna, Dezani-Ciancaglini, and Padovani, 2012). In
Section 8.6, we present instead the revisited notion of Good protocol when
our aim is to monitor it (and not to implement it).

The Bad. Those protocols that do not respect the connectedness for sequence
and unique point of choice properties are bad, and it is not di�cult to see why
(see Chapter 9 for further details on how to handle these scenarios).

Let us consider protocol P2:

P2 = alice
wa,buy
=⇒ barbara:carol

wa,checkAvail
=⇒ dave:

(dave
wa,take2shop
=⇒ emily:ϵ ∨ frank

wa,avail2Days
=⇒ barbara:ϵ)

The protocol states that carol can send a checkAvail message to dave only
after alice has sent a buy message to barbara, but how can carol know if and
when alice sent that message?

Also, the protocol states that either dave sends a message to emily, or frank
sends a message to barbara: how can frank know if he is allowed to send a
message to barbara, without coordinating with dave via some covert channel
not shown in the protocol?

The Ugly. Protocols which are not syntactically correct are ugly, and are
ignored by all the authors. However, some protocols may be ugly even if they
are syntactically correct, for example if they are characterized by:
– “Causality unsafety”: consider the two shu�ed sequences carol

wa,buy
=⇒ dave:ϵ

|alice
wa,buy
=⇒ barbara:ϵ ; suppose we are only able to observe what alice sends,

and what dave receives. If alice sends buy and dave receives buy, we might
think that the protocol above is respected. However, that observation might
be due to alice sending buy to dave, which is not an allowed interaction: the
protocol is not causality safe (Lanese et al., 2008).
– “Non-Determinism”: given an interaction taking place in some protocol state,
we might want to deterministically know how to move to the next state. For
example, if alice asks her mother to buy a book, and the protocol is

alice
wa,buy
=⇒ barbara : barbara

wa,r eserve
=⇒ carol : ϵ ∨

alice
wa,buy
=⇒ barbara : barbara

wa,buyI tYoursel f
=⇒ alice : ϵ

we could move on either branch. If we opt to move on the �rst branch, the
next expected action is that barbara asks carol to reserve a book. If, instead,
barbara tells alice to buy the book by herself, we have to backtrack to the
previous protocol state in order to check that this interaction is allowed as
well; this is extremely ine�cient and should be avoided (Chapter 4).

While the notions of good and bad protocols are universally recognized,
ugliness also depends on the formalism and its expressive power.

Are Bad Protocols Really so Bad? Let us suppose that the protocol is used
for monitoring purposes: it does not need to be implemented or enacted. The

103

8 Issues with Agent Interaction Protocols

agents in the MAS are already there, and they are heterogeneous black boxes
behaving according to their own policies and goals, in full autonomy. However,
they act inside a society and they must respect the society rules, expressed
as an interaction protocol. The monitor is in charge of observing messages
that agents exchange, in a completely non obtrusive way, and check if they
are compliant with the protocol ruling the MAS.

Let us suppose that the MAS protocol is P1. If the monitor is able to observe
any kind of message, transmitted over any kind of communication means,
we are in a standard situation, with a monitor in charge for verifying the
compliance of actual interactions with a good protocol.

But what if the monitor cannot observe email messages? The protocol ruling
the MAS is still P1, and it is still a good protocol, but from the monitor point
of view it contains covert channels: the unobservable interactions taking place
via email. Keeping them in the protocol would lead to false positives, as the
monitor would look for messages foreseen by the protocol that it cannot see
and would hence detect a protocol violation, but removing them from P1 leads
to P2: a bad protocol! If the monitor observation ability is not perfect – which
is an extremely realistic situation – there is no gain in struggling against bad
protocols: unobservable interactions are there and generate the same problems
of covert channels.

Given that good protocols where unobservable interactions have been re-
moved can become bad protocols and that perfect observability cannot be
always given for granted, we claim that – at least for monitoring purposes –
bad protocols can be necessary to suitably model observable protocols.

8.5 Partial Observability: how the Good Becomes Bad

In this section we discuss how a good protocol may become (possibly) a bad
one, due to unobservability or partial observability of events in the original
protocol.

First of all, we need to associate with each event foreseen by the protocol, its
“observability likelihood”, namely the likelihood that the event can be observed
by the monitor. If, when the event takes place, the monitor can always observe
it, we associate 1 with the event. If the monitor can never observe the event
(for example, the monitor can sni� whatsApp messages only, and the event
is an email message), we associate 0 with it. If the event is transmitted over
an unreliable or leaky channel, we may associate a number between 0 and 1,
excluding the extremes, with it. The higher this number, the more likely the
monitor will be able to observe the event when it takes place.

Let us consider P1 again, and let us suppose that:
(1) the observability likelihood of messages exchanged via email is 0;
(2) the observability likelihood of whatsApp messages sent by frank is 0.95;
(3) the observability likelihood of the other whatsApp messages is 1.

Condition 1 forces us to remove all messages exchanged via email from the
protocol, and condition 3 forces us to keep all the other whatsApp messages but
those sent from frank. The �rst and last conditions would lead to protocol P2.

104

8 Issues with Agent Interaction Protocols

The second condition, however, requires a special treatment. In fact, message
frank

wa,okOrder
=⇒ dave could be either observed or not and both cases would

be correct, even if the �rst one should be much more frequent than the second.
The subprotocol where frank

wa,okOrder
=⇒ dave can either take place or not

can be modeled by

frank
wa,okOrder
=⇒ dave : ϵ ∨ ϵ

The transformation from P1 to the protocol which takes observability likeli-
hood into account requires the following steps:

1. since the observability likelihood of messages exchanged via email is 0,
remove them by P1;

2. since the observability likelihood of the whatsApp message sent by
frank is 0.95, substitute it with the corresponding subprotocol where the
message can take place or not, and concatenate this subprotocol with
the remainder;

3. since the observability likelihood of the other whatsApp messages is 1,
keep them all.

The result is
P3 = alice

wa,buy
=⇒ barbara : carol

wa,checkAvail
=⇒ dave :

(dave
wa,take2shop
=⇒ emily : ϵ ∨ (frank

wa,okOrder
=⇒ dave : ϵ ∨ ϵ) · ϵ)

which can be simpli�ed into the equivalent protocol

P3′ = alice
wa,buy
=⇒ barbara : carol

wa,checkAvail
=⇒ dave :

(dave
wa,take2shop
=⇒ emily : ϵ ∨ (frank

wa,okOrder
=⇒ dave : ϵ ∨ ϵ))

Since dealing with likelihoods in (0, 1) results into a more complex protocol,
as the original protocol must be extended with the choice between observing
the event or not, we might want to collapse likelihoods greater than a given
threshold to 1, to avoid proliferation of choices. For this reason we assume
that the protocol designer can set a threshold above which events will be
considered fully observable. Let Th be such threshold and P be the protocol to
transform.
P ′ is obtained by P applying the following rules; L is the observability

likelihood of interaction int

1. if L > Th, int is kept;

2. if 0 < L ≤ Th, int is transformed into the subprotocol where int can
either take place or not, and suitably concatenated with the remainder;

3. if L = 0, int is discarded.

105

8 Issues with Agent Interaction Protocols

Since di�erent monitors might observe di�erent events and observability
might change over time, causing an evolution of the observable protocol, mod-
eling the good global protocol and then transforming it based on contingencies
is a better engineering approach than directly modeling the partially observ-
able protocol. However, even if we start from a good P protocol, P ′ might be
bad or even ugly.

8.5.1 Observability-driven transformation of trace expressions

We implemented the algorithm sketched above for protocols modeled as trace
expressions. The code has been developed in SWI-Prolog and is shown below,
along with comments starting with % that explain each clause.

The predicate that implements the algorithm is
filter_events(ProtocolToFilter, FilteredProtocol, Th, PrId).
Since in our setting protocols are �rst class entities which can be analyzed,
manipulated, and exchanged among agents, they are characterized by a unique
name, PrId. ProtocolToFilter is the Prolog representation of the trace ex-
pression where unobservable events must be �ltered out, FilteredProtocol
is the transformation result, Th is the threshold above which an event is con-
sidered fully observable and hence kept in FilteredProtocol.

Each event type must be associated with its likelihood to be observed, thanks
to the observable(ET, Lkl, PrId) predicate.

As an example, if we had a parametric English Auction interaction pro-
tocol where the buy(X) parametric event type observability is 0.5, and the
observability of all the other event types is 1, we would write
observable(buy(X), 0.5, english_auct) :- !.
observable(E, 1, english_auct) :- E \= buy(_).

where ! prevents the Prolog interpreter from backtracking when it is ex-
ecuted8 and \= stands for “cannot unify with”. Uppercase symbols represent
logical variables, and p :- q, r, s. should be read as “if q, r, s hold, then p
holds”.
filter_events operates according to the trace expression syntax. We omit

the rule for dealing with parameters.
filter_events(epsilon, epsilon, _, _) :- !.
% empty trace expression epsilon is transformed into epsilon

filter_events(ET:T, TFiltered, Th, PrId) :-
observable(ET, 0, PrId), !,
filter_events(T, TFiltered, Th, PrId).

% trace expression ET:T where observable(ET, 0, PrId) is
% transformed into TFiltered if T is transformed into
% TFiltered (ET is removed)

filter_events(ET:T, TFiltered, Th, PrId) :-

8The functioning of “cut” is more complex than this, but we can ignore the details.

106

8 Issues with Agent Interaction Protocols

observable(ET, Lkl, PrId), Lkl > Th, !,
filter_events(T, T1, Th, PrId),
TFiltered = ET:T1, !.

% trace expression ET:T where observable(ET, Lkl, PrId) and
% Lkl > Th is transformed into ET:T1, where T1 results from
% transforming T (ET is kept)

filter_events(ET:T, TFiltered, Th, PrId) :-
observable(ET, Lkl, PrId),
filter_events(T, T1, Th, PrId), Lkl =< Th,
TFiltered = ((ET:epsilon) \/ epsilon) * T1), !.

% in trace expression ET:T where observable(ET, Lkl, PrId) and
% Lkl <= Th, ET becomes optional.
% ET:T becomes ((ET:epsilon)\/epsilon)*T

filter_events(T1\/T2, TFiltered, Th, PrId) :-
filter_events(T1, TFiltered1, Th, PrId),
filter_events(T2, TFiltered2, Th, PrId),
TFiltered = (TFiltered1 \/ TFiltered2), !.

% filtering T1\/T2 means filtering T1, filtering T2, and
% joining the results with the \/ operator.
% The same holds for the other operators, |, *, /\ (not shown)

The code for filter_events is 36 lines long and – provided a basic know-
ledge of logic programming – is self-explaining. Despite its simplicity, it can
operate on very complex parametric and recursive (also non terminating)
protocols. The magic behind the “invisible” management of non terminating
protocols like P4 is the use of the SWI-Prolog coinduction library which allows
to cope with in�nite terms without entering into loops9.

8.5.2 Implementation and Experiments

We have experimented the �ltering algorithm on the parametric trace ex-
pression modeling the English Auction protocol presented in Section 6.4. As
anticipated, we initially assumed that the only partially observable event was
buy(X) with observability likelihood 0.5. By setting the threshold to 0.7, all
occurrences of buy(X) became optional, while with a threshold equal to 0.4

they were all kept in the protocol. By setting the observability likelihood of
buy(X) to 0, any occurrence of buy(X) was removed from the protocol.

The algorithm was also run on a variant of the Alternating Bit Protocol
(Deniélou and Yoshida, 2012) with 6 agents.

Di�erent observability likelihoods and di�erent thresholds were set with
both protocols, to test the algorithm in an exhaustive way.

9SWI-Prolog implementation available open-source at:
https://github.com/AngeloFerrando/TExpSWIPrologConnector/tree/master/

TExpSWIPrologConnector/src/main/resources/prolog-code

107

https://github.com/AngeloFerrando/TExpSWIPrologConnector/tree/master/TExpSWIPrologConnector/src/main/resources/prolog-code
https://github.com/AngeloFerrando/TExpSWIPrologConnector/tree/master/TExpSWIPrologConnector/src/main/resources/prolog-code

8 Issues with Agent Interaction Protocols

8.6 Revisiting Good and Bad notions

Now that we have introduced the concept of good, bad and ugly protocols,
we have to focus on their use and how this can in�uence our notions. When
we introduced these contents we compared them with the corresponding
properties in the other research communities. The reason for that concerns the
possible uses of the protocols. Once we de�ne an AIP using a trace expression,
we can use such de�nition to guide the development of a MAS (enact the
protocol) or to guide the monitoring of a MAS (monitor the protocol).

The concepts of Good, Bad and Ugly AIPs in the sections above are very
strong. When we have a sequence of messages we require a cause-e�ect link
between the messages, and when we have choices, we always require they
are taken locally by one agent. These requirements are so strong because
we wanted to present a good level of classi�cation that would be suitable
both for enactment and monitoring purposes. In particular, when we talk
about implementation and monitoring of the protocols, we should also well
establish what kind of communication model will be used. The choice of a
speci�c communication model in�uences what is a Good and a Bad protocol.
Until now, we have not assumed any particular communication model for
the implementation of all communicative acts. Consequently, we have been
considering the least restrictive one; the asynchronous model, where the
messages are decomposed in their sending and receiving parts, and they can
be reordered and lost. Because of this, the requirements to be Good are very
strong.

When in Chapters 9 and 10 we will use AIPs for monitoring purposes, we will
need a more relax notion of Good and Bad protocols, adding some constraints
on the communication model used. More speci�cally, we are going to consider
a communication model where each send event is immediately followed by its
corresponding receive event. This kind of model can be called Realizable with
Synchronous Communication (RSC) (Chevrou, Hurault, and Quéinnec, 2016).
If the couple (send event, corresponding receive event) is viewed atomically,
this corresponds to a synchronous communication execution. If the MAS
exploits RSC for achieving the communication among the agents, we can relax
the constraints for an AIP to be considered Good. We can reformulate the
properties that makes a protocol Good as follows:

1. two sequential messages must always have at least one agent in common;

2. in case some mutually exclusive choice must be made, the two messages
involved in this choice must have at least one agent in common.

Since we know that the sending of a message is always followed by its corres-
ponding receipt, we can relax both the constraints, because we can consider
the messages as atomic interactions, where observing the send or receive
events is the same.

Considering as an example the following trace expression

τ = alice
msд1
=⇒ bob : charlie

msд2
=⇒ bob:ϵ

108

8 Issues with Agent Interaction Protocols

if we follow the de�nition of Good and Bad protocols (Section 8.4), we conclude
that this is a Bad protocol, because msд2 is not a reaction to msд1. There is
not an evident cause-e�ect link between the two messages. But, knowing
that we are using a RSC communication model, we can use the reformulated
constraints concluding that is a Good one. In fact, even though there is no
cause-e�ect betweenmsд1 andmsд2, since they are two atomic interactions,
it is enough to look at bob in order to make sure that the order of the messages
is preserved.

In the same way, if we consider this other example

τ = (alice
msд1
=⇒ bob:ϵ) ∨ (charlie

msд2
=⇒ bob:ϵ)

we have a similar situation. With respect to the de�nition given in Section
8.4, also this protocol is a Bad one, because the choice is not up to only one
agent involved in the protocol (both alice and charlie can choose). But, since
we know that the messages are atomic interactions, again it is enough to look
at bob in order to make sure that the order of the messages is preserved.

8.7 Discussion

In this chapter we have analyzed the notions of good, bad and ugly protocols
inside and outside the MAS community, and we have motivated the reason
why bad protocols are not that bad by considering runtime monitoring of MAS
with unobservable events.

The likelihood of the events has been also integrated inside the RIVERtools
framework (Chapter 14), and so the filter_events predicate. Consequently,
the developer can write freely the AIPs and the framework will automatically
identify each of them as a Good, Bad or Ugly protocols.

In the following chapters, we consider two interesting aspects that derives
from the issues raised by this chapter. In Chapter 9, we show how to handle
bad protocols when we are interested in decentralized the runtime veri�cation
process. In Chapter 11, we study and propose a conformance algorithm for
AIPs represented through trace expressions. In both scenarios, all the trace
expressions used for the examples have been already �ltered with respect
to the likelihood of the events. Consequently, these trace expressions are
already exploited in their speci�c context. In Chapter 9, in order to see how
to handle a bad protocol (even though we started from a good one) in a
decentralize scenario, and in Chapter 11, in order to show how the exploited
trace expressions can be compared for reusing agents.

109

9 Decentralized Runtime Veri�cation of
Agent Interaction Protocols

“The future is already here – it’s just not evenly distributed.”
- William Gibson

In the previous chapter we presented how to use trace expressions to
de�ne AIP. Until now in the thesis we have always focused our in-
tentions on the centralized runtime veri�cation of the speci�cations.
In this chapter we present how to obtain the same result in a de-
centralized way. In particular, we describe DecAMon, an algorithm
for decentralizing the monitoring of the MAS communicative beha-
vior. If some agents in the MAS are grouped together and monitored
by the same monitor, instead of individually, a partial decentral-
ization of the monitoring activity can still be obtained even if the
“unique point of choice” (a.k.a. local choice) and “connectedness for
sequence” (a.k.a. causality) coherence conditions are not satis�ed
by the protocol (Chapter 8). Given an AIP speci�cation, DecAMon
outputs a set of “Monitoring Safe Partitions” of the agents, namely
partitions P which ensure that having one monitor in charge for
each group of agents in P allows detection of all and only the pro-
tocol violations that a fully centralized monitor would detect.

The contents of this chapter are published in
(Ferrando, Ancona, and Mascardi, 2017)

110

9 Decentralized Runtime Veri�cation of Agent Interaction Protocols

9.1 Introduction

When the system is small, one centralized monitor can check it all without
becoming a bottleneck. Nevertheless, centralized monitoring does not scale
with the growth of the system dimension and a decentralized monitoring
approach may be the only viable solution for coping with the system complex-
ity. Also, decentralized monitoring may be a more natural choice when the
system is distributed, since di�erent monitors can be associated with groups of
physically, geographically, or logically connected entities, gaining in e�ciency
and modularity.

Associating an individual agent or group of agents with a sni�er in charge
of observing their communicative behavior does not raise serious technical
problems if JADE or Jason are used (Chapter 14). Rather, the actual problem
for dynamically verifying that a MAS behaves according to a given AIP is

how to ensure that the system made up of the decentralized monitors detects all
and only the same protocol violations that a single centralized monitor

observing the MAS would detect?

In this chapter we describe DecAMon, an algorithm for Decentralizing the
Agent system Monitoring which works also in case the global AIP speci�cation,
expressed using trace expressions (Chapter 4), does not satisfy those coherence
conditions.

This proposal, which falls in the Decentralized Runtime Veri�cation area
(Bonakdarpour et al., 2016b), is based on the idea that, between a fully central-
ized and a fully decentralized monitoring approach, a third viable solution is
possible: partially decentralized monitoring.
DecAMon is completely agnostic w.r.t. the type of observed events. For sake

of presentation clarity, in this chapter, we limit ourselves to consider interaction
events, the DecAMon algorithm can be applied to trace expressions dealing
with events of any kind. The only requirement for the DecAMon algorithm to
work is that the set of agents involved in a given event should be e�ciently
computed.

9.2 Motivations

Alice and Carol are two PhD students. They are writing a paper for the AAMAS
conference with their colleague Bob and their supervisor Dave. Alice and Carol
are in charge for running experiments. They are working on a shared repository
and they agree on the notion of satisfactory results. A few weeks before the
deadline, they decide that if the experimental results will reach a satisfactory
level by the evening, Alice will contact their supervisor to meet, otherwise
Carol will ask Bob to meet, to �x the problems.

If Alice and Carol are modeled as software agents, the resulting global agent
interaction protocol, AIP1, can be represented by alice

meet
=⇒ dave:ϵ ∨ carol

meet
=⇒

111

9 Decentralized Runtime Veri�cation of Agent Interaction Protocols

bob:ϵ where, as we presented in Chapter 8, aд1
msд
=⇒ aд2 stands for “there is an

interaction between aд1 and aд2, with exchanged messagemsд”1.
Once the paper is ready, Alice and Carol decide that Alice will make a �rst

submission in the morning and then she will make a last check and, eventually,
modify and re-submit the paper. Carol will send the �nal version to their
supervisor in the evening. The resulting protocol can be modeled by the trace
expression
AIP2 = alice

submit
=⇒ aamas : (alice

submit
=⇒ aamas : ϵ ∨ ϵ) ·

carol
submitted
=⇒ dave : ϵ

where Alice makes one or two submissions and after Carol sends submitted to
Dave.

Even if AIP 1 and AIP 2 are simple and realistic, they have two major
problems.

The �rst problem is that these protocols are too abstract. Although their
meaning can be easily grasped, what does actually mean for two agents to
interact? Let us consider this simple example: alice

m1
=⇒ bob : alice

m2
=⇒ carol :

ϵ . Once Alice has sent m1 to Bob, could she immediately send m2 to Carol,
without worrying if Bob received m1, or not? This problem is related with
the granularity of interactions, which describe message sending and receiving
as an atomic action. Since, in many cases, communication is asynchronous,
assuming interaction atomicity is not always the case. We should decouple
the sending event and the reception event, in order to provide a more precise
description of the system. By using aд1

〈
msд
=⇒aд2〉

to denote “aд1 sends msд to
aд2” and

〈aд1
msд
=⇒〉

aд2 to denote “aд2 receivesmsд from aд1”, we can describe
both a synchronous behavior, where nothing should happen between a sending
and the corresponding reception (we use a for alice, b for bob, and c for carol),
CAIP1 = a

〈
m1
=⇒b〉

:
〈a

m1
=⇒〉

b : a
〈
m2
=⇒c〉

:
〈a

m2
=⇒〉

c : ϵ , and an asynchronous one, where
sending comes �rst, the corresponding reception comes after, but other events
could take place in between, CAIP2 = a

〈
m1
=⇒b〉

: (
〈a

m1
=⇒〉

b : ϵ | a
〈
m2
=⇒c〉

:
〈a

m2
=⇒〉

c :
ϵ)2. Of course, ordering among events in each branch must be preserved. The
idea behind τ1 |τ2 is that τ1 and τ2 are independent.

The second problem, is that both AIP 1 and AIP 2 are bad protocols according
to the de�nition provided in 8. Moving from a global protocol that involves all
the agents in the MAS to a view of that protocol restricted to an agent subset
is usually named “projection”. In Section 8.2 we already presented the concept
of projection of a trace expression.

Even if we are able to project onto individual agents, how can we be sure
that the individual monitoring gives the same results as the centralized one?
This second problem is independent from the granularity of communicative
events. Rather, it depends on taking a centralized or a decentralized view point.
Let us consider AIP1. A monitor Malice associated with Alice and driven by the

1Instead of having a generic event we focus on an interaction one like we did in Chapter 8.
2We name these protocols CAIP1 and CAIP2 to stress that they are “Concrete”.

112

9 Decentralized Runtime Veri�cation of Agent Interaction Protocols

protocol portion that involves Alice only, will consider her behavior correct
if she sends a meet message to Dave. In the same way, a monitor Mcarol will
consider Carol’s behavior correct if she sends a meet message to Bob. However,
performing both actions will not be compliant with AIP1 as they are mutually
exclusive. Unfortunately, none among Malice, Mcarol , Mbob, Mdave alone can
verify if mutual exclusivity is respected. Following the terminology introduced
in Section 8.4, AIP 1 does not satisfy the unique point of choice coherence
condition.

The problem with AIP2 is di�erent: what happens if Carol sends submitted
to Dave before Alice submits the paper? The AIP2 portion that Mcarol sees is

carol
submitted
=⇒ dave : ϵ

On the other hand, the portion seen by Malice is
alice

submit
=⇒ aamas : (alice

submit
=⇒ aamas : ϵ ∨ ϵ)

No individual monitor can state whether a submitted message sent by Carol
to Dave comes after Alice completed her last submission. According to the
behavioral types terminology (Section 8.4), AIP2 does not satisfy the con-
nectedness for sequence coherence condition. According to Desai and Singh’s
terminology (Chapter 8), AIP2 problem is due to the blindness of carol w.r.t.
the submit message that alice sends to aamas.

Such blindness can be related to the presence of private channels that cannot
be observed by the monitors, or can be related to partial observability issues.
In Section 8.5, we showed indeed how a good protocol can become a bad one
because of partial observability of communication channels. Whatever the
reasons, monitoring bad protocols cannot always be decentralized3 on any
possible subset of the agents. Instead, a protocol that meets the coherence
conditions can always be fully decentralized since protocol violations are only
due to messages which are exchanged in a given protocol state, but were not
allowed in that state. For example AIP4 = alice

submit
=⇒ aamas : (alice

sumbitted
=⇒

dave : ϵ | aamas
ack
=⇒ alice : ϵ) could be violated by Alice submitting the paper

twice. However, the second alice
submit
=⇒ aamas interaction would violate both

Π(AIP4, {alice}) and Π(AIP4, {aamas}) (the projections4 of the global protocol
AIP4 onto {alice} and {aamas}, respectively), so at least one decentralized
monitor between Malice and Maamas would immediately detect it. A protocol
that does not meet the coherence conditions causes problems only when we
try to fully decentralize its monitoring: each agent aд has its own monitor
that checks if aд behavior is compliant with Π(τ , {aд}) (Section 4.4). This may
cause the loss of sequentiality and mutual exclusivity constraints. As long as
we assume that centralized monitoring takes place no problems arise, apart
from the enormous bottleneck that the centralized monitor may become!

Given a protocol speci�cation and the setAдs of agents in the MAS,DecAMon
faces the partial decentralization problem by computing a set of “Monitoring
Safe (MS) partitions” of Aдs . If a violation of the behavior patterns de�ned

3We consider the revisited notion of bad protocol that will be presented in Section 8.6.
4Section 8.2.

113

9 Decentralized Runtime Veri�cation of Agent Interaction Protocols

by the protocol takes place, one monitor in charge for one group in the MS
partition will detect it.

9.3 DecAMon: a Gentle Introduction

Let us suppose that the agents involved in the MAS are alice, bob, carol, and
dave.

If {{alice, carol}, {bob}, {dave}} is a MS partition, then alice and carol must
be monitored by the same monitor M {alice,carol }, whereas bob and dave may be
monitored by distinct monitors. This does not mean that having one monitor
M {alice,carol } for alice and carol and one M {bob,dave} for bob and dave (to be
monitored together), or one single monitor M {alice,bob,carol,dave} for all the four
agents, is not monitoring safe: larger groups can be formed, provided that
those agents which must stay together, are monitored together. The above
partition is one of those returned by DecAMon on the AIP1 protocol introduced
in Section 9.2: if the same monitor observes both alice and carol, it will be
able to detect violations of mutual exclusivity between alice

meet
=⇒ dave and

carol
meet
=⇒ bob.

In a similar way, one MS partition of the agents involved in AIP2 is {{alice,
dave}, {aamas}, {carol}}: if the same monitor is in charge for both alice and
dave, it can verify that the interaction involving dave (and carol) takes place
after the interactions involving alice (and aamas).

Intuition 1 (Monitoring Safety (MS)). A partition of Aдs P is Monitoring Safe
(MS partition, abbreviated inMS in the sequel) if it enjoys the following property:
if the agents belonging to the same group in P are monitored together, no loss
of sequentiality and mutual exclusivity constraints takes place; one among the
decentralized monitors detects a violation of “its portion” of the global protocol
i� a violation of the global protocol occurs.

If the system monitoring cannot be decentralized, DecAMon will return
only one MS, {Aдs}. On the other hand, if each agent aдi ∈ Aдs , with i ∈

{1, ...,n} can be monitored independently from the others, DecAMon will
output {{aд1}, {aд2}, {aд3}, ..., {aдn}}.

DecAMon agnosticism w.r.t. the events syntax gives us the �exibility to
execute it on abstract and concrete agent protocol speci�cations by de�ning
the involved function as

involved(aд1
msд
=⇒ aд2) = {aд1,aд2}

involved(aд1
〈
msд
=⇒aд2〉

) = {aд1}
involved(

〈aд1
msд
=⇒〉

aд2) = {aд2}.

When we adopt a concrete protocol perspective, where sending and reception
are distinct, the only entity involved in a message sending (resp. reception) is
the sender (resp. the receiver), even if we keep track of the message sender
also in a “receive” event

〈aд1
msд
=⇒〉

aд2 and viceversa.
Continuing the AIP1 example, the other MSs are

{{alice}, {carol}, {bob, dave}}

114

9 Decentralized Runtime Veri�cation of Agent Interaction Protocols

{{alice, bob}, {carol}, {dave}}
{{alice}, {carol, dave}, {bob}}

If e1 and e2 are joined by an ∨ operator in the AIP like alice
meet
=⇒ dave

and carol
meet
=⇒ bob in AIP1, and involved(ev1) has empty intersection with

involved(e2), one agent aд1 ∈ involved(e1) must be monitored together with
one agent aд2 ∈ involved(e2) to ensure that mutual exclusivity becomes veri-
�able. In a similar way, if e1 and e2 are two sequential events like alice

submit
=⇒

aamas and carol
submitted
=⇒ dave in AIP2, and involved(e1) has empty in-

tersection with involved(e2), one agent aд1 ∈ involved(e1) must be mon-
itored together with one agent aд2 ∈ involved(e2) in order to verify the
correct sequentiality of e1 and e2. In both cases, if there exists one agent
aдI ∈ involved(e1) ∩ involved(e2) no grouping is required: the monitor associ-
ated with aдI can verify mutual exclusiveness and correct sequencing between
e1 and e2.

9.3.1 High-level Description and Examples

Now, we are ready to introduce the notions of critical point of a trace expression
and of minimality of a MS partition. The function �rst(τ) returns all the �rst
events of τ and last(τ) all its last events. For example, �rst(a : ϵ ∨ b : c : ϵ) =
{a,b} and last(a : ϵ ∨ b : c : ϵ) = {a, c}. Their precise de�nition is given in
Section 9.4 and 9.5.

De�nition 7 (Critical Point). A couple of events (e1, e2) is a critical point of τ
i� τsub is a sub-expression of τ such that
• τsub = τ1∨τ2 and e1 ∈ �rst(τ1), e2 ∈ �rst(τ2) and involved(e1) ∩

involved(e2) = ∅, or
• τsub = e1:τ2 and e2 ∈ �rst(τ2) and involved(e1) ∩ involved(e2) = ∅, or
• τsub = τ1·τ2 and e1 ∈ last(τ1), e2 ∈ �rst(τ2) and involved(e1) ∩ involved(e2)

= ∅.
We say that τsub generates the critical point (e1, e2). Uniqueness of (e1, e2) is

violated if both e1 and e2 take place. Sequentiality of (e1, e2) is violated if e2 takes
place before e1.

De�nition 8 (Minimal Monitoring Safety (MMS)). The partition P of agents
Aдs is MinimalMonitoring Safe (MMS) if it isMonitoring Safe and if splitting one
of the groups of agents in P leads to a partition that does not satis�es monitoring
safety any longer.

For generating a set of MSs, DecAMon exploitsmerдe:
merдe : P(P(Aдs)) × P(P(Aдs)) → P(P(Aдs))

One argument C ofmerдe (no matter which, since merge is commutative)
consists of new groups of agents that are constrained to be monitored together;
the other argument OldC models the existing agent grouping constraints: we
name them “constraint stores”.

115

9 Decentralized Runtime Veri�cation of Agent Interaction Protocols

The result of merдe is a new constraint store NewC where both the con-
straints in OldC and those in C hold. No unnecessary constraints (namely, no
unnecessary groupings) are added to the merдe result. The way merдe works
ensures that the groups of agents in NewC ∈ P(P(Aдs)) will be disjoint if the
groups of agents in C were disjoints, and the groups of agents in OldC were.
Let us introducemerдe by means of an example: the idea behind

merдe({{aд1,aд2}}, {{aд1,aд3}, {aд4,aд5}})

is to add the new constraint “agents aд1 and aд2 must be monitored together”
to the constraint store {{aд1,aд3}, {aд4, aд5}} stating that aд1 and aд3 must
be monitored together, as well as aд4 and aд5. The only constraint store
resulting from this merge is NewC = {{aд1,aд2,aд3}, {aд4,aд5}}, where
both the previous and the new constraints are respected. The amount of agents
that are constrained to be monitored together is minimized: in NewC , aд1
and aд4 can be monitored independently as there is no reason to group them.
The constraint store NewC ′ = {{aд1,aд2,aд3,aд4, aд5}} satis�es the old and
new constraints as well but uselessly imposes that aд1 and aд4 are monitored
together:merдe will never return it.

DecAMon carries out a structural analysis of the trace expression in order to
�nd those agents that must be monitored together because they are involved
in a critical point. As soon as new groups of agents that must be monitored
together are found, the new constraint store is merged with the previously
computed one: given a trace expression τ = τ1 op τ2 where op is a binary
operator, DecAMon computes the constraint stores due to op (they may be more
than one, as shown in the sequel) and computes the combinations obtained
by merging each of them with each of those resulting from τ1 and each of
those resulting from τ2. Since the constraint stores deriving from τ1 and τ2
are computed independently, they could overlap up to some extent and their
merge could generate groupings with unnecessary constraints. To cope with
this problem we have implemented a post-processing algorithm that allows
us to obtain the set of MMSs as a re�nement of the DecAMon output, by
removing those MSs that add useless constraints to other MSs. The global
minimality property can be obtained either via this post-processing activity
where each returned MS is compared with all the others, or by making merдe

more complex (merдe would need to know all the possible MSs for each trace
expression branch to discard the overlapping ones and return only minimal
MSs). We opted for the �rst solution.

Let us consider another example: if we had to compute

merдe({{aд1,aд2,aд4}}, {{aд1,aд3}, {aд2,aд5}})

the only possible result would be to merge {aд1,aд3} and {aд2,aд5} where
aд1 and aд2 could be monitored independently, to meet the new constraint
where they must be monitored together; a4 must be grouped with a1 and a2.
The result is {{aд1,aд2,aд3,aд4,aд5}}.

Let us consider the more complex protocol AIP5 de�ned as

(ab:bc:ϵ | de:ef :ϵ | дh:hi:ϵ) · (jk :ϵ | lm:ϵ | no:ϵ)

116

9 Decentralized Runtime Veri�cation of Agent Interaction Protocols

where ab stands for a
ab
=⇒ b, bc stands for b

bc
=⇒ c , and so on.

DecAMon starts exploring AIP5 looking for critical points. The outmost AIP5
operator is a concatenation, which may generate critical points. DecAMon
computes all the last events in τ1 = (ab:bc:ϵ | de:ef :ϵ | дh:hi:ϵ) and all the �rst
events in τ2 = (jk :ϵ | lm:ϵ | no:ϵ). They turn out to be last(τ1) = {bc, ef ,hi}
and �rst(τ2) = {jk, lm,no}.

Any couple (e1, ev2) s.t. e1 ∈ last(τ1), e2 ∈ �rst(τ2), and involved(e1) ∩

involved(e2) = ∅ is a critical point. Here, (bc, jk), (bc, lm), (bc,no), (ef , jk),
(ef , lm), (ef ,no), (hi, jk), (hi, lm), (hi,no), are all the critical points generated
by the outmost · in AIP5.

For each critical point (e1, e2), one agent involved in e1 must be grouped
together with one agent involved in e2.

De�nition 9 (Critical Point Satisfaction). A group of agents satis�es a critical
point (e1, e2) if it contains one agent involved in e1 and one agent involved in e2.

De�nition 10 (Trace Expression Satisfaction). A constraint store C satis�es
a trace expression if all the critical points generated by the outmost operator in
that trace expression are satis�ed by one group in C .

To make another example,C51 = {{b, e,h, j, l ,n}} satis�es AIP5 = τ1·τ2 since
b which is involved in bc is grouped with j involved in jk , l involved in lm,
and n involved in no. The same holds for e involved in ef and h involved in hi .

AlsoC52 = {{b,k,m,o}, {e,h, j, l ,n}}, satis�es AIP5: b is grouped with k ,m,
and o hence satisfying (bc, jk), (bc, lm), and (bc,no); e and h are grouped with
j, l , n, hence satisfying (ef , jk), (ef , lm), (ef ,no), (hi, jk), (hi, lm), and (hi,no).

The same holds for C53 = {{c,k}, {b,m,o}, {e,h, j, l ,n}}: {c,k} satis�es
(bc, jk); {b,m,o} satis�es (bc, lm) and (bc,no); {e,h, j, l ,n} satis�es all the re-
maining critical points.

The constraint store

{{c, j}, {f , l}, {i,n}, {a}, {b}, {d}, {e}, {д}, {h}, {k}, {m}, {o}}

instead, does not satisfy AIP5: for example, no group satis�es (bc, lm).
We de�neCτ0 as the constraint store that contains all and only one singleton

set {aд} for each agent aд involved in τ . Given the initial constraint store C50
for the protocol AIP5, DecAMon merges C50 with one of the constraint stores
C5i that satisfy AIP5, selected on a nondeterministic basis. Then, it recursively
explores the components τ1 and τ2 of AIP5 and adds the newly discovered
constraints to the previously computed constraint store. The sequences ab:bc:ϵ ,
de:ef ϵ and дh:hi:ϵ in τ1 do not generate any new critical point because they
verify the connectedness for sequence condition. Moreover, they are joined by
a shu�e operator that generates no critical points. Thus, no new constraints
are generated because of τ1. In a similar way, no new constraints are generated
because of τ2.

The nondeterministic selection of one of the constraint stores satisfying the
currently analyzed trace expression is repeated for each possible constraint

117

9 Decentralized Runtime Veri�cation of Agent Interaction Protocols

stores. By backtracking to any point of choice, DecAMon can produce all
the possible MSs, one at a time: C51, C52, C53, C54, together with other 5628
possible initial constraint stores, are the MSs output by DecAMon!

If τ1 were (ab:cd :ϵ | e f :дh:ϵ) (AIP6) the new constraints {{a, c}, {e, д}} (or
{{a,d}, {f ,д}}, ...) due to connectedness for sequence violation should have
been merged with C5i giving a di�erent (and smaller) �nal set of MSs.

If τ1 were (ab:cd :ϵ ∨ e f :дh:ϵ) (AIP7) a further constraint {a, e} (or {a, f },
or {b, e}, or {b, f }) due to unique point of choice violation should have been
merged with the previous ones.

Finally, let us consider the concrete protocol CAIP1 = a
〈
m1
=⇒b〉

:
〈a

m1
=⇒〉

b :
a
〈
m2
=⇒c〉

:
〈a

m2
=⇒〉

c : ϵ . As anticipated, DecAMon works exactly in the same way,
provided it can compute the involved function. CAIP1 can be seen as a

〈
m1
=⇒b〉

: τ1.
Its outmost operator is the �rst pre�x with {a

〈
m1
=⇒b〉
} at its left, �rst(τ1) =

{
〈a

m1
=⇒〉

b} and these two events share no involved agents: (a
〈
m1
=⇒b〉
,
〈a

m1
=⇒〉

b) is
a critical point. The constraint store generated by CAIP1 is {{a, b}} which
must be merged with the initial constraint store {{a}, {b}, {c}} leading to
{{a, b}, {c}}. Now DecAMon is called on τ1 =

〈a
m1
=⇒〉

b : a
〈
m2
=⇒c〉

:
〈a

m2
=⇒〉

c : ϵ
generating the new constraint store {{a, c}} which must be merged with
{{a, b}, {c}} leading to {{a, b, c}}. In the end, all the three agents must be
monitored together. This is correct: how can Mb alone verify that when b
receives m1 from a, a actually sent it before? If we make either security as-
sumptions (“all the received messages have been actually sent by the sender”)
or strong assumptions on the underlying network reliability (“all the sent mes-
sages will be received”, or even “all the sent messages will be received in the
same order they were sent”) we can relax some monitoring safety constraints,
but this is not possible in general.

9.4 Design

The de�nition of �rst does not need to take cycles – which are due to trace ex-
pressions recursive de�nitions – into account; in fact, contractiveness ensures
that, while exploring a trace expression following its syntactical structure, a
pre�x operator will be met in a �nite number of steps.

– �rst(ϵ) = {}
– �rst(ϑ :τ) = {ϑ }
– �rst(τ1·τ2) = �rst(τ1) ∪ �rst(τ2) if ε(τ1);
�rst(τ1·τ2) = �rst(τ1) otherwise

– �rst(τ1∧τ2) = �rst(τ1∨τ2) = �rst(τ1 |τ2) =
�rst(τ1) ∪ �rst(τ2).

The de�nition of last is more complex because it must not recall itself in
case of cyclic trace expressions and contractiveness is not enough to avoid
entering a loop. For example, τ = e:τ is contractive, but we must have plenty
of time and patience if we are going to look for its last element! In this case,

118

9 Decentralized Runtime Veri�cation of Agent Interaction Protocols

last should return {} (and we should do the same...) but it can do this only if
it keeps track of the already met trace expressions. To this aim last saves the
argument of each call into a global repository; if it is called on τ and it had
already been called on τ before, it returns {}:

– last(ϵ) = {}

– last(τ) = {} if last had already been called on τ ;
otherwise, the following rules apply:

– last(ϑ :τ) = last(τ) ∪ {ϑ } if ε(τ);
last(ϑ :τ) = last(τ) otherwise

– last(τ1·τ2) = last(τ2)

– last(τ1∧τ2) = last(τ1∨τ2) = last(τ1 |τ2) =

last(τ1) ∪ last(τ2).

To describe DecAMon we �rst describe the DecOne logical predicate

DecOne ⊆ T × P(P(Aдs)) × P(P(Aдs))

The wayDecOne works ensures that the groups of agents inArд ∈ P(P(Aдs))
are disjoint, for eachArд that can appear as its second or third argument. Given
a trace expression τ ∈ T , DecOne(τ ,OldC,NewC) holds i� there exists a con-
straint storeC s.t.C satis�es τ and NewC =merдe(OldC,C). DecOne(τ ,OldC,
NewC) nondeterministically selects one of the constraint stores that satisfy τ ,
let us name it C , and merges it with OldC resulting into NewC . Since DecOne
must avoid entering loops, it operates like last keeping track of the already
met trace expressions.

• DecOne(ϵ,OldC,OldC)

• DecOne(τ ,OldC,OldC) if DecOne had already been called on τ ; otherwise,
the following rules apply:

i. DecOne(ϑ :τ ,OldC,NewC) i�
∃ C ′ s.t. DecOne(τ ,OldC,C ′),
∃ C that satis�es ϑ :τ , and
NewC =merдe(C ′,C);

ii. DecOne(τ1·τ2,OldC,NewC)

(resp. DecOne(τ1∨τ2,OldC,NewC)) i�
∃ C1 s.t. DecOne(τ1,OldC,C1),
∃ C2 s.t. DecOne(τ2,C1,C2),
∃ C that satis�es τ1·τ2 (resp. τ1∨τ2) and
NewC =merдe(C2,C);

iii. DecOne(τ1∧τ2,OldC,NewC)

(resp. DecOne(τ1 |τ2,OldC,NewC)) i�
∃ C1 s.t. DecOne(τ1,OldC,C1),
∃ C2 s.t. DecOne(τ2,C1,NewC).

Since ∧ and | do not generate critical points, DecOne is just called onto
the �rst branch and the resulting constraint store is passed to the call on the

119

9 Decentralized Runtime Veri�cation of Agent Interaction Protocols

second branch (rule iii); the de�nition on trace expressions whose outmost
operator is either · or ∨ is more complex as a further merge with the constraint
store generated by these operators is required (rule ii). We recall that Cτ0 is
the initial constraint store: it contains one set {aд} for each agent aд involved
in τ .

De�nition 11 (Monitoring Safety (MS)). A partition of Aдs P is Monitoring
Safe either if DecOne(τ ,Cτ0, P) holds, or if DecOne(τ ,Cτ0, P ′) holds and P can
be obtained from P ′ by aggregating some groups in it.

We are just one step away from giving the DecAMon de�nition: we need to
introduce the �ndall(Var , Goal , Res) extra-logical predicate which creates a
list Res of Var instances obtained by backtracking over Goal . We are ready:

DecAMon(τ) = MSs

i� �ndall(P , DecOne(τ , Cτ0, P),MSs)

Lemma 1. Let τ be a trace expression, let (e1, e2) be a critical point generated
by a sub-expression of τ , and let τpr j be a trace expression obtained from τ by
projection (namely, τpr j = Π(τ ,GrI) for some group of agents GrI ⊆ Aдs).

MGr I detects the uniquenness or sequentiality violation of (e1, e2)
⇐⇒

the trace expression τpr j checked by MGr I (the monitor for GrI) contains a
sub-expression that generates a critical point (e1, e2).

Proof. =⇒
We �rst demonstrate that the trace expression τpr j checked by MGr I contains
both e1 and e2.

MGr I detects the uniquenness violation of (e1, e2) in the current state of the
protocol represented by τc if either e1 takes place, τc can move to τ ′c (τc

e1
→ τ ′c),

and there is no state τ ′′c that can be reached by repeatedly applying the→
relation starting from τ ′c s.t. τ ′′c

e2
→ τnext , for some τnext , or viceversa (e2 takes

place moving the protocol to a state where e1 cannot “�re” any transition, and
from which there are no reacheable states where e1 can �re any transition).
In order for MGr I to detect the uniquennes violation in both cases above, τc
must contain both e1 and e2. Since τc is a sub-expression of τpr j , τpr j must
contain both e1 and e2.
MGr I detects the sequentiality violation of (e1, e2) in the current state of

the protocol represented by τc if either e2 takes place and there is no τnext s.t.
τc

e2
→ τnext (when e2 takes place, it was not foreseen by the protocol), or if e1

takes place, τc
e1
→ τ ′c , and an event e3 , e2 takes place. Since the protocol τ ′c

can move only if e2 takes place because of the sequentiality between e1 and e2,
no transition is possible from τ ′c and a violation is detected by MGr I .
In order for MGr I to detect the violation in both cases above, τpr j must contain
both e1 and e2.

120

9 Decentralized Runtime Veri�cation of Agent Interaction Protocols

We can complete the “ =⇒ ” proof: since τpr j contains both e1 and e2 and
they generated a critical point (e1, e2) in some sub-expression of τ , they must
generate a critical point (e1, e2) also in some sub-expression of τpr j , as τpr j is
obtained from τ by projection. �

Proof. ⇐=

By de�nition of critical point: the sub-expression τpr jSub of τpr j generates a
critical point (e1, e2) i�

• τpr jSub = τ1∨τ2 and ∃e1 ∈ �rst(τ1), ∃e2 ∈ �rst(τ2) s.t. involved(e1) ∩
involved(e2) = ∅, or

• τpr jSub = e1:τ1 and ∃e2 ∈ �rst(τ1) s.t. involved(e1) ∩ involved(e2) = ∅, or

• τpr jSub = τ1·τ2 and ∃e1 ∈ last(τ1), ∃e2 ∈ �rst(τ2) s.t. involved(e1) ∩
involved(e2) = ∅.

If τpr jSub = τ1∨τ2 and both e1 and e2 take place, the �rst event taking place
leads to a protocol state where the second event cannot �re any transition
(we remind the assumption that all events are distinct):MGr I detects a violation.

If τpr jSub = e1:τ1 and e2 takes place in τpr jSub , τpr jSub cannot move to a
next state since e2 is not an expected event in τpr jSub . If e1 takes place, then
τpr jSub

e1
→ τ1 but if an event e3 di�erent from e2 takes place immediately after,

then there is no τnext s.t. τ1
e3
→ τnext . In both cases, MGr I detects a violation.

If τpr jSub = τ1·τ2 and e2 takes place in τpr jSub , τpr jSub cannot move to any
next state. If e1 takes place, then τpr jSub

e1
→ τ2 but, if an event e3 di�erent from

e2 takes place immediately after, there is no τnext s.t. τ2
e3
→ τnext . In both cases,

MGr I detects a violation.
�

Lemma 2. Let τ be a trace expression, let (e1, e2) be a critical point generated
by a sub-expression of τ .

MAдs detects the uniquenness or sequentiality violation of (e1, e2)
⇐⇒

the trace expression τ checked byMAдs contains a sub-expression that gener-
ates a critical point (e1, e2).

Proof. By lemma 1, when GrI = Aдs and τ = Π(τ ,Aдs).
�

We say that a monitor M “checks” a trace expression τ if M is in charge
for verifying that the events it observes do not violate the current state of the
protocol, and the initial state of the protocol is represented by τ . Theorem 3
demonstrates that a partition P computed by DecOne is monitoring safe.

121

9 Decentralized Runtime Veri�cation of Agent Interaction Protocols

Theorem 3. Let τ be a trace expression involving agents Aдs , let Cτ0 be τ ini-
tial constraint store, let P = {Gr1,Gr2, ..., GrN } be one partition computed
by DecOne(τ , Cτ0, P), and let (e1, e2) be a critical point generated by a sub-
expression τsub of τ .
The centralized monitorMAдs that checks τ detects a violation of (e1, e2) ⇐⇒

there existsMGr I that checks Π(τ ,GrI) which detects a violation of (e1, e2).

Proof. =⇒
Since (e1, e2) is a critical point generated by some sub-expression of τ , for the
de�nition of DecOne there must be one group of agents GrI ∈ P that contains
both aд1 and aд2 s.t. aд1 ∈ involved(e1) and aд2 ∈ involved(e2). The projection
functioning ensures that all the events that involve one agent in GrI are kept
in Π(τ ,GrI). Thus, the trace expression Π(τ ,GrI) will cointain both e1 and e2
as GrI contains both aд1 and aд2, and (e1, e2) is a critical point generated by
some sub-expression of Π(τ ,GrI).
MGr I can detect the violation of (e1, e2) for Lemma 1.

⇐=

(Reductio ad absurdum) Let us suppose that MGr I detects a violation of (e1, e2).
If MAдs does not detect that violation, then, for Lemma 2, the trace expression
τ checked by MArдs does not contain any sub-expression that generates (e1, e2).
This contradicts the theorem hypothesis that (e1, e2) is a critical point generated
by a sub-expression τsub of τ .

�

Theorem 3 answers the research question addressed by this chapter: “how
to ensure that the system made up of the decentralized monitors detects all and
only the same protocol violations that a single centralized monitor observing
the MAS would detect.”

9.5 Implementation and Experiments

DecAMon has been implemented in SWI-Prolog. The code amounts to almost
600 lines. The choice of Prolog was due to many reasons: one-to-one cor-
respondence between the transition and empty rules de�nitions and their
rule-based implementation; built-in support to cyclic terms and to the recogni-
tion that a cyclic term has already been met; built-in support to backtracking
over goals; availability of Prolog-based tools for trace expressions management.

When the protocol has as many critical points as AIP5, computing all the
MSs may require too much time. DecOne can be used instead of DecAMon to
compute one MS at a time. As an example, calling DecOne of AIP5 produced
the �rst result in 9 ms, the second one in 8 ms, the third in 1 ms. Although
DecOne might not return the best MS according to the designer or the runtime
environment needs, its result is guaranteed to be monitoring safe.

If time is not an issue, however, all the MSs can be generated for further
post-processing. We implemented the following functionalities which operate
on a set of monitoring safe partitions:

122

9 Decentralized Runtime Veri�cation of Agent Interaction Protocols

1. removing non minimal partitions from the set;
2. selecting those partitions that contain N agents groups or less (resp. more),

where N is given;
3. selecting those partitions that contain M singleton agents groups or less

(resp. more), where M is given;
4. selecting those partitions where the agents in the set D, given as input in

form of a Prolog list, are all disjoint;
5. selecting those partitions where the agents in the set T , given as input in

form of a Prolog list, are all together.
We run experiments with the protocols introduced in the previous sections,

AIP1 to AIP7, plus the following four. We used a MacBook Pro (Retina, 13-inch,
Early 2015) with Processor 2,7 GHz Intel Core i5, Memory 8 GB 1867 MHz
DDR3, SWI-Prolog version 7.2.3.

AIP8 = (alice
submit
=⇒ aamas : aamas

ack
=⇒ alice : ϵ) |

(bob
submit
=⇒ aamas : aamas

ack
=⇒ bob : ϵ) |

(carol
submit
=⇒ aamas : aamas

ack
=⇒ carol : ϵ)

respects the connectedness for sequence condition: the agents can be mon-
itored independently.

AIP9 = (alice
submit
=⇒ aamas : chair

r eview
=⇒ bob :

(aamas
accept
=⇒ alice : ϵ)∨(aamas

r e ject
=⇒ alice : ϵ))

| (bob
submit
=⇒ aamas : chair

r eview
=⇒ alice :

(aamas
accept
=⇒ bob : ϵ)∨(aamas

r e ject
=⇒ bob : ϵ))

demonstrates that DecAMon may return non minimal monitoring safe parti-
tions, which are detected during the post-processing stage. The two only MMSs
are {{chair ,aamas}, {alice}, {bob}} and {{alice,bob}, {chair }, {aamas}} but
DecAMon also returns {{aamas,alice,bob}, {chair }}, besides others, where
AAMAS is uselessly grouped with Alice and Bob.

The other two protocols are variants of the Alternating Bit Protocol (ABP)
described in (Deniélou and Yoshida, 2012). The ABP is an in�nite iteration,
where the following constraints have to be satis�ed for all occurrences of the
interactions:

– The n-th occurrence of message m1 must precede the n-th occurrence of
m2 which in turn must precede the n-th occurrence of m3.

– For k ∈ {1, 2, 3}, the n-th occurrence of mk must precede the n-th oc-
currence of the acknowledge ak, which, in turn, must precede the (n + 1)-th
occurrence of mk.

Because of space constraints, we do not show here the trace expressions
corresponding to ABPnorm and ABPcr it . The di�erence between them is that
in ABPnorm , m1 = bob

m1
=⇒ alice, m2 = bob

m2
=⇒ carol, m3 = bob

m3
=⇒, and

the acknowledges �ow in the opposite direction: M{bob } can monitor all the
protocol, as Bob is involved in all the interactions.

123

9 Decentralized Runtime Veri�cation of Agent Interaction Protocols

Protocol Dec (ms) Dec (]) MMS (ms) MMS (])
aip1 2 4 2 4
aip2 1 4 1 4
aip3 1 4 1 4
aip4 1 1 1 1
aip5 122400 5632 74711 5632
aip6 308 256 139 256
aip7 309 128 37 128
aip8 1 1 1 1
aip9 1 16 1 2
abp_norm 14 1 1 1
abp_crit 8 16 1 16

DecAMon execution time (Dec (ms));
MSs returned by DecAMon (Dec (]));

execution time of the tool for removing non-minimal MSs (MMS (ms));
computed MMSs (MMS (])).

Table 9.1 . Experimental results: using DecAMon to extract minimal monitoring
safe partitions.

In ABPcr it , instead, m1 = alice
m1
=⇒ bob, m2 = carol

m2
=⇒, m3 = emma

m3
=⇒

frank (with their respective acknowledges), so the connectedness for sequence
of m1, m2, and m3 cannot be guaranteed by one monitor alone.

For each protocol we measured the time required by DecAMon to compute
its output, the number of MSs computed by DecAMon, the time required to
remove the non minimal partitions from DecAMon output, and the number of
MMSs. W.r.t. Table 9.1, we highlight the following aspects:

– the number of computed MSs depends on the trace expression structure
and not on its length: AIP6 and AIP7 only di�er for one operator, but they give
di�erent results;

– the number of computed MSs of AIP4, AIP8, ABPnorm is 1: this means
that the monitoring can be fully decentralized, as DecAMon returns only the
partition with one singleton group for each agent;

– the number of computed MSs of AIP9 is di�erent from the number of
MMSs: DecAMon may return non minimal partitions.

Since the more groups in the MMS, the better from the decentralization
point of view, selecting a MMS with a high number of groups is a good choice
for decentralizing as much as possible. Another criterion for preferring a MMS
w.r.t. another could be the number of singleton groups, which correspond to
agents that can be monitored on their own. Table 9.2 shows the results of
other post-processing functions, namely the number of MMSs that contain
at least 1, 5, 7, 9 agents groups for each protocol, and the number of MMSs
that contain at least 1, 5, 7, 9 singleton groups. Although Table 9.2 only reports
numbers, the post-processing tools return all the partitions that meet the given
conditions. The MAS designer or a software agent in charge for the dynamic

124

9 Decentralized Runtime Veri�cation of Agent Interaction Protocols

Protocol ≥ 1д ≥ 5д ≥ 7д ≥ 9д ≥ 1s ≥ 5s ≥ 7s ≥ 9s
aip1 4 0 0 0 4 0 0 0
aip2 4 0 0 0 4 0 0 0
aip3 4 0 0 0 4 0 0 0
aip4 1 0 0 0 1 0 0 0
aip5 5632 5632 1600 64 5632 1600 64 64
aip6 256 256 128 0 256 128 128 0
aip7 128 128 128 0 128 128 128 0
aip8 1 0 0 0 1 0 0 0
aip9 2 0 0 0 2 0 0 0
abp_norm 1 0 0 0 1 0 0 0
abp_crit 16 0 0 0 16 0 0 0

Number of MMSs that contain at least 1, 5, 7, 9 agents groups
(columns ≥ 1д, ≥ 5д, ≥ 7д, ≥ 9д).

Number of MMSs that contain at least 1, 5, 7, 9 singleton groups
(columns ≥ 1s , ≥ 5s , ≥ 7s , ≥ 9s).

Table 9.2 . Experimental results: �ltering minimal monitoring safe partitions using
di�erent post-processing functions.

recon�guration of the MAS monitoring activity can select one among them
and can impose further conditions such as having some agents disjoint or
together. By running this tool we discovered for example that there is no MMS
of AIP5 where b, c , d are together, and there are 4224 MMSs where b and m

are disjoint.

9.6 Discussion

The literature on Distributed Runtime Veri�cation (DRV) is still very limited.
BSPL (Chapter 5) supports a rich variety of practical protocols and can be

realized in a distributed asynchronous architecture where the participating
agents act based on local knowledge alone; in this way DRV of declarative pro-
tocols is naturally supported. The major di�erence of our work in comparison
to BSPL, is that we face the challenge of DRV of those protocols that do not
satisfy the unique point of choice and connectedness for sequence conditions.

Testerink et al. (Testerink, Bulling, and Dastani, 2016; Testerink, Dastani,
and Bulling, 2016) present a formal model for decentralized monitors that
supports their formal analysis to face the robustness and security, and a theor-
etical analysis of distributed runtime norm enforcement. They synthesize the
properties that each local monitor is able to verify, expressed in LTL, in order
to build a consistent representation of the global state of the world. We do
the opposite: we start from a global protocol modeling how the world should
behave, and create sub-protocols that involve disjoint groups of agents, in
such a way that violations to the global protocol can be discovered by at least
one of the monitors in charge for these groups.

The work (Mostafa and Bonakdarpour, 2015) which is closer to ours ad-

125

9 Decentralized Runtime Veri�cation of Agent Interaction Protocols

dresses the following problem: “given a distributed program D and an LTL3
property ϕ, construct a set of monitor processes whose composition with D

can evaluate ϕ at runtime in a sound, complete, and decentralized fashion.”
The main di�erences with our proposal consist in the observed events, which
are related to the execution of a program and not to communicative beha-
vior in a MAS, and, most importantly, the use of LTL3 for specifying system
properties; in Chapter 4 we have shown that trace expressions are strictly
more expressive than LTL3 when used for runtime veri�cation. Falcone et al.
(Falcone, Cornebize, and Fernandez, 2014) propose an e�cient and generalized
decentralized monitoring algorithm to detect violation of any regular speci�c-
ation by local monitors without central observation point; also in this case
the main di�erence with our work is the expressive power of the employed
formalism for speci�cations.

Decentralizing the runtime monitoring using DecAMon can prove useful
in many situations. The applications we are actually looking at fall in the
e-health and well-being domains that we started exploring in the last year
(Aielli et al., 2016; Ferrando, Ancona, and Mascardi, 2016). If we have a global
protocol describing the expected behavior of a system of communicating low-
power wearable devices able to measure vital parameters to check the health
conditions of a person, we would like to add lightweight monitors on top of
them to monitor only those events “local” to the devices, still being sure that
global protocol violations will be detected. In these scenarios, proximity of the
monitor to the device is of paramount importance.

For what concerns the time complexity of computing a Minimal Monitoring
Safe partition, we suspect that the problem can be reduced to computing a
solution to a Minimal Constraint Network (Montanari, 1974), recently proven
to be NP-hard (Gottlob, 2012). For the applications we have in mind, the need
for decentralizing a protocol for monitoring purposes arises only seldom, so
the (possibly) high complexity of DecAMon can be tolerated. Experiments on
several protocols have empirically shown that, once the protocol has been
decentralized, the time complexity of monitoring is linear in the trace length,
and does not depend on the number of involved agents.

126

10 Decentralized Runtime Veri�cation of
Agent Interaction Protocols with Gaps

“Whenever people agree with me
I always feel I must be wrong.”

- Oscar Wilde

The work presented in this chapter represents the bridge between
Chapter 7 and Chapter 9; here we take advantage of the decentral-
ized approach also in presence of uncertainty on the interactions
observed by the distributed monitors. In Chapter 7, we presented
Probabilistic Trace Expressions (PTEs), the extension of the trace ex-
pression formalism with probabilities. Thanks to this extension, we
can achieve the runtime veri�cation of systems also with the pres-
ence of gaps inside the analyzed traces. Since one of themain focuses
in the thesis is to use trace expressions to achieve the runtime veri-
�cation of AIPs, it is natural to show how we can use this extended
formalism also to manipulate them. As we presented in Chapter 9,
in order to dynamically verify the behavior of MAS, which are com-
plex systems, a decentralized solution able to scale with the number
of agents is necessary. When, for physical, infrastructural, or legal
reasons, the monitor is not able to observe all the events emitted by
the MAS, gaps are generated. In this chapter we present a runtime
veri�cation decentralized approach to handle observation gaps in a
MAS using PTEs.

127

10 Decentralized Runtime Veri�cation of Agent Interaction Protocols with Gaps

10.1 Introduction

As we presented in Chapter 9, Distributed Runtime Veri�cation is a relatively
new research sub-�eld1 aimed at designing fault-tolerant distributed algorithms
that monitor other distributed algorithms, with the end goal of developing
lightweight software systems that are more e�cient that traditional veri�cation
techniques (Bonakdarpour et al., 2016a,b). The literature on DRV is almost
limited (Bartocci, 2013; Falcone, Cornebize, and Fernandez, 2014; Fraigniaud,
Rajsbaum, and Travers, 2014; Fraigniaud et al., 2014; Herlihy, 1991; Mostafa
and Bonakdarpour, 2015) and becomes even more limited when we consider
DRV of a special kind of systems: multiagent systems. In the MAS area, in
fact, we are only aware of our own previous works presented in Chapter 8 and
Chapter 9.

This chapter addresses the two issues above, decentralized runtime veri�ca-
tion of partially observable systems, in a MAS context. The �ndings presented
in this work can be generalized and applied to other kinds of systems, but –
for presentation purposes – we concentrate our investigation on MAS.

In o�ine RV gaps in the trace logs are due to the process of sampling
observed events in order to reduce the monitoring overhead. Gaps can also be
met in online RV, where the system behavior is analyzed while the system is
running and problems with the infrastructure, privacy and legal issues that
prevent the monitor to observe some kind of events, faults in the monitor
observation capabilities, may generate gaps. For instance, we may be interested
in checking communication protocols, where the observed events are messages
and the properties we want to check are protocols. In such kind of scenarios,
we can still have gaps, but, instead of having them for optimizations (sampling)
like for the o�ine runtime veri�cation process, we may have gaps due to issues
with the network, lost of messages, and so on. Although the problems raised by
online and o�ine RV with gaps share many similarities, the online setting is
much more challenging. Each time a gap is perceived, the monitor must make
guesses on the possible actual events that the gap represents and save all the
states generated by these guesses. A possibly huge logical tree-like structure
with states as nodes, and moves from states to states as edges, represents the
open possibilities2. In o�ine RV, this logical tree-like structure can be explored
following a depth-�rst search, requiring a limited amount of memory. If the
RV takes place online, its exploration must follow a breadth-�rst strategy,
with much more space needed to save the states, as the �nal trace of events
is unknown and the levels of the structure are generated and explored at the
same time. In order to cope with the state space explosion due to guesses in

1The First Workshop on DRV was held at Bertinoro in May 2016, http://www.labri.fr/
perso/travers/DRV2016/, and the �rst survey has been published in October 2016 (Bonak-
darpour et al., 2016b). It references 18 papers only and many of them, such as (Fraigniaud,
Rajsbaum, and Travers, 2014; Fraigniaud et al., 2014; Herlihy, 1991), deal with issues which
fall outside the scope of our investigation.

2In the remainder we will use the term “branch” to denote paths in this logical structure, and
we will sometime use “states” meaning “the �nal states of all the possible branches”, when
this does not generate confusion.

128

http://www.labri.fr/perso/travers/DRV2016/
http://www.labri.fr/perso/travers/DRV2016/

10 Decentralized Runtime Veri�cation of Agent Interaction Protocols with Gaps

the online RV scenario, we propose to decentralize the monitoring activity.
RV decentralization is a very natural choice when the system under monit-

oring is a MAS, which is distributed by de�nition, and may improve e�ciency,
as the veri�cation process can be spread on di�erent machines improving
performance; scalability, as under some conditions depending on the protocol
(see Chapter 9) it is possible to associate one monitor with each agent in
the MAS, keeping under control the RV complexity even when the number
of agents grows; feasibility, as for physical/logical/legal reasons one single
monitor might not be able to observe all the events generated by the MAS.

The feature that is usually subject to veri�cation (both static and dynamic)
in a MAS is its communicative behavior (Baldoni, Baroglio, and Capuzzimati,
2014a; Baldoni et al., 2015; Chopra, Christie, and Singh, 2017; Chopra and Singh,
2015a; Singh, 2011a; Winiko�, Liu, and Harland, 2004b; Yadav, Padgham, and
Winiko�, 2015b; Yolum and Singh, 2002). With respect to (Stoller et al., 2011)
and Chapter 7, in this chapter we do not aim at verifying temporal properties.
Rather, we want to check the conformance of the MAS actual communicative
behavior to an AIP that models the allowed interactions among agents, under
the hypotesis that some interactions could not be observed. The research
question we address is thus

how to evaluate the probability that a MAS satis�es an AIP,
in the presence of gaps?

In Chapter 7 we introduced Probabilistic Trace Expressions (PTEs) and the
theory behind them. In this work we take a more pragmatical perspective
and we show how to use PTEs for decentralized RV of AIPs within MAS with
gaps3.

10.2 Exploiting DecAMon for PTEs

In Chapter 9 we presented the DecAMon algorithm to decentralize agent inter-
action protocols modeled using trace expressions. There, we de�ned the notion
of “monitoring safe” partition (De�nition 11). A partition can be used to drive
the distribution process. To decentralize the monitoring activity, we project
the global AIP onto each subset of agents belonging to the partition, where by
“projection” we mean that we maintain only the interactions involving agents
in the chosen subset (Section 8.2). In general, not all the partitions can be used
for the RV decentralization. A partition that can be used to decentralize the
RV of a protocol is called “monitoring safe” and the algorithm presented in
Chapter 9 generates all the monitoring safe partitions for a given AIP.

Since under the conditions considered in this chapter we may observe gaps,
we could not have only one single state representing the current situation
of the protocol, like it happens in our previous works; instead, we have to
maintain all the states that may be possibly reached “via the gaps”. As already

3In a certain way, this chapter can be seen as the bridge between the approach presented in
Chapter 9 and the formalism extension presented in Chapter 7.

129

10 Decentralized Runtime Veri�cation of Agent Interaction Protocols with Gaps

introduced in Chapter 7, each state can be represented as a tuple 〈τ ,π , evs〉,
where τ is the PTE representing the current state of the protocol and π is the
joint probability that the sequence of events evs is compliant with τ .

Let us name M0 the set of possible initial states of the monitor (as there
may be more than one). The number 0 stands for the 0th iteration, since at the
beginning we have not consumed any event yet. We can �rst run DecAMon
on the global AIP to �nd a good set of monitoring safe partitions and, after
that, we can use one of them to project the τ s in M0 onto the subsets of the
agents. Once we have obtained the distributed versions of the initial τ s via
projection, we can generate one monitor for each partition, and decentralize
the RV.

The combination of decentralization and lack of information calls for a
synchronized management of gaps. Since each monitor has a di�erent state
representing its current protocol evolution, when there is an observation gap,
each monitor can have di�erent opinions about which are the correct events
that might suitably “�ll the gap”. The local perspectives can be compared and
used by the monitors to cut wrong guesses, and hence wrong states, on the
basis of distributed knowledge. Despite the overhead due to synchronization,
this approach may dramatically improve performance, as discussed in the next
sections.

10.3 Handling Gaps in Decentralized RV

Gaps represent lack of information, thus a point (or points) in the event trace
where the monitor does not know what event had been actually generated by
the system under monitoring. In the remainder we will write that “gaps can be
observed”, in the sense that a monitor can realize that something went wrong
and that an event was generated by the system, and not correctly observed.
We also assume that, in a decentralized setting, when one monitor “observes
a gap”, all the monitors “observe a gap” as well. From a technical viewpoint,
this could be obtained by forcing one monitor to inform the others when it
observes a gap. This would require some shared clock among the monitors as,
in order for our algorithm to work, the gap must take place at the same time
for all the monitors hence raising clock synchronization issues. Given that
these issues are well known and well studied in distributed systems (Lamport,
1978), we leave them out of our investigation.

When a centralized monitor observes a gap, since it is the only monitor
checking the event trace w.r.t. the AIP speci�cation, it can make guesses on
what the gap is and reason on its own guesses, eventually tagging some of
them as wrong due to successive observations. When there are many monitors,
each one monitoring a subset of the agents, and hence a sub-protocol of the
global AIP, each monitor can still suppose what the observed gap is, but the
reasoning on its suppositions must be shared with the others. This sharing
phase among the monitors is crucial, because it allows them to cut wrong
branches on the basis of what other monitors suppose, or what they are fully
sure of.

130

10 Decentralized Runtime Veri�cation of Agent Interaction Protocols with Gaps

Let us consider two monitors m1 and m2 that observe a gap. Given that the
protocols driving the two monitors are di�erent, although being derived via
projection from the same global protocol,m1 might suppose that the events
admissible for �lling the observed gap are e1 and e2, while m2 could instead
suppose that admissible events are e2 and e3. Bothm1 and m2 must keep track
of these possibilities in their local knowledge bases, and – so far – they do not
need to share they guesses.

Let us now suppose that in the current state of m1, in the branch where
e1 was supposed to have taken place, the only successive possible event is
e4, while in the branch for e2 the only possible event is e5. If, after the gap,
m1 observes e5, it can cut the branch where the gap was associated with e1,
because e5 would not be allowed after e1. The gap before e5, that could be �lled
in principle by e1 and e2, becomes bound - “without any doubt”4 - to e2. After
having found the right value for the gap and cut one branch,m1 informsm2
allowing it to cut the branch where the value for that gap was guessed to be e3.
In this way, bothm1 andm2 can continue the veri�cation process supposing
that the unobserved event represented by the gap was e2, with some given
probability due to the probability associated with e2 in the PTE modelling the
protocol.

Before presenting the decentralized monitoring algorithm, we make some
considerations on the kind of gaps a monitor can observe. So far, we considered
generic events. This is correct and consistent with the general approach presen-
ted in Chapter 7, but in a MAS scenario where PTEs model agent interaction
protocols we can be more speci�c. In this scenario, in fact, the universe of
events is Msдs , namely the universe of the possible messages among agents.
Such special events can be represented as a1

c
=⇒ a2 (as we have already done in

the rest of the part), meaning that agent a1 sends a message to a2 with content
c . Since messages are composed by (at least) three mandatory components,
sender, receiver and content, there can be many partially instantiated gaps
such as:

• gap(a1
_
=⇒ a2), where the content of the message is unknown;

• gap(_
m
=⇒ a2), where the sender is unknown;

• gap(a1
m
=⇒ _), where the receiver is unknown.

Although, for sake of clarity, in the sequel we consider gaps where neither
the sender, nor the receiver, nor the content are known (total absence of
information), all the combinations of “information holes” are possible, and

4Modulo the assumption that observed events are compliant with the foreseen protocol. Gaps
may inevitably generate false negatives. In this case,m1 assumes that the gap was e2 because
this would be consistent with the successive observation of e5 and with the protocol to be
respected. If the gap were any other event, a protocol violation would have taken place and
m1 should have raised a protocol monitoring exception. Depending on the protocol, the
violation could be recognized later on, or never. Suppose for example an in�nite protocol
where only as are allowed. A gap will be necessarily �lled with a even if the actual event
was b, and if the successive observed events are all as, the violation will never be discovered.

131

10 Decentralized Runtime Veri�cation of Agent Interaction Protocols with Gaps

partially instantiated gaps may be exploited to reduce branches due to guesses.
The algorithm presented in the next section can be easily adjusted to take
partially instantiated gaps into account.

10.3.1 Synchronizing Decentralized Gaps Management

We present the algorithm used by the decentralized monitors to synchronize
the gaps management, in order to cut useless branches and check the com-
pliance of interactions with the protocol. When an event is generated by the
system, two di�erent situations can take place.
Case 1: The event is not a gap
If the event is not a gap, each monitor that observed it can use the event

for updating its local state(s). If some branches have been removed as in
the previous example involving m1 and m2, the monitor has to inform the
other monitors of the associations between gaps and events that are not
admissible any longer. This phase can be reiterated until all the monitors have
cut all the possible wrong brnches, and have nothing more to say. After this
synchronizations stage, the monitoring process continues in the normal way.
Case 2: The event is a gap
To keep the presentation simple, we assume that gaps are observed by all the

monitors at the same time. Each monitor guesses the events admissible to �ll
the gap, according to its local states. If the gap is partially instantiated (some
of its components were correctly observed, like the sender, or the content,
or both), the monitor can use this information to reduce the set of possible
candidate events.

The two cases can be seen as a reduce and extend stages, respectively. When
the monitor observes a fully instantiated event it can invalidate zero, one or
more branches. If the invalid branches contain gaps, the monitor can also
invalidate the associations between these gaps and the guessed events, and can
allow the other monitors to invalidate these associations as well via commu-
nication. On the other hand, observation of gaps generates as many branches
as the events that, according to the AIP, could �ll the gap. We can formalize
this intuition in the following way.

Given M0 as the set of global states {〈τ1,π1, []〉, ..., 〈τn ,πn , []〉}.

1. Distribute M0 with respect to a given partition P = {{aдs1}, ..., {aдsnp }},
projecting the states onto subsets of the agents involved (the function Π

projects an AIP τ onto a set of agents aдs removing all the events whose
sender and receiver do not belong to aдs), obtaining

M0, {aдs1 } = {〈Π(τ1, {aдs1}),π1, []〉, ..., 〈Π(τn , {aдs1}),πn , []〉}

...

M0, {aдsnp } = {〈Π(τ1, {aдsnp }),π1, []〉, ..., 〈Π(τn , {aдsnp }),πn , []〉}

2. Each monitor observes only the event messages involving the agents
belonging to its set aдsi :

132

10 Decentralized Runtime Veri�cation of Agent Interaction Protocols with Gaps

a) if the event message is a gap, the monitor guesses what it could be
and generates as many states as the possible events (extend);

b) if the event message is ground, the monitor can cut branches, and
in this case it communicates with other monitors the gap values
that are no longer admissible (reduce).

3. If, after observation of an event or because of information received from
other monitors, the set of possible current states for a monitorm becomes
empty,m stops the monitoring process, informs all the other monitors,
and they also stop monitoring. The absence of possible current states
for a monitor is due to a protocol violation that took place, preventing
at least one monitor to move a further step. So, the system checked does
not satisfy the agent interaction protocol and the associated probability
is 0.

4. Else,
a) if there are no events left to analyze, the monitoring process ends

and the resulting probability is evaluated (see after how);
b) else, repeat from step 2.

To be more clear, in step 2, given the current event message, each monitor
queries its current state following the PTE operational semantics presented in
Chapter 7 in order to check if the event message is admissible or not. In the
updating phase, the monitors inform the others trying to cut not admissible
branches.

If the monitoring process ends without violations detected and there are no
more events left to analyze, each monitor stops with at least one admissible
branch. Each monitor states its own evaluation of the probability that the
system’s behavior satis�es the agent interaction protocol. This probability can
be computed summing up all the joint probabilities contained in all the �nal
states, corresponding to the last nodes of the admissible branches. This leads to
having one estimated value for each monitor: we can adopt di�erent strategies
to summarize the �nal, and global, one. One way could be to take the smallest
value among all those estimated by all the monitors, meaning that we want to
be cautious and we consider the lowest probability of acceptance; otherwise
we could take the biggest value, meaning that we want to be optimi stic since
we trust the probabilities used in our speci�cation. In other scenarios we could
take the means of the values computed by the monitors, or a weighted means
where weights model each monitor’s trustability, or other domain-dependent
strategies.

10.4 Example

We present a simple example helping us to show how the extend and reduce
steps work. We consider a scenario involving a MAS involving four agents:

133

10 Decentralized Runtime Veri�cation of Agent Interaction Protocols with Gaps

{alice,bob, charlie,dave}. The set of events of our interest is the set of mes-
sages that these agents can use to communicate with each other.

Given the PTE
τ = τ1∨τ2

τ1 = alice
msд1
=⇒ bob[0.7]:(bob

msд2
=⇒ charlie[0.6]:τ1 |bob

msд3
=⇒ dave[0.4]:ϵ)

τ2 = alice
msд4
=⇒ dave[0.3]:(charlie

msд5
=⇒ dave[0.3]:ϵ |bob

msд3
=⇒ dave[0.7]:τ2)

We decentralize τ on each single agent, obtaining5:

M0, {alice } = {〈Π(τ , {alice}), 1, []〉} = {〈τalice , 1, []〉}

M0, {bob } = {〈Π(τ , {bob}), 1, []〉} = {〈τbob , 1, []〉}
M0, {char lie } = {〈Π(τ , {charlie}), 1, []〉} = {〈τchar lie , 1, []〉}

M0, {dave } = {〈Π(τ , {dave}), 1, []〉} = {〈τdave , 1, []〉}
where

τalice = τ1alice∨τ2alice

τ1alice = alice
msд1
=⇒ bob[0.7]:τ1alice

τ2alice = alice
msд4
=⇒ dave[0.3]:τ2alice

τbob = τ1bob∨τ2bob

τ1bob = alice
msд1
=⇒ bob[0.7]:(bob

msд2
=⇒ charlie[0.6]:τ1 |bob

msд3
=⇒ dave[0.4]:ϵ)

τ2bob = bob
msд3
=⇒ dave[0.7]:τ2bob

τchar lie = τ1char l ie∨τ2char l ie

τ1char l ie = bob
msд2
=⇒ charlie[0.6]:τ1char l ie

τ2char l ie = charlie
msд5
=⇒ dave[0.3]:τ2char l ie

τdave = τ1dave∨τ2dave

τ1dave = bob
msд3
=⇒ dave[0.4]:ϵ

τ2dave = alice
msд4
=⇒ dave[0.3]:(charlie

msд5
=⇒ dave[0.3]:ϵ |bob

msд3
=⇒ dave[0.7]:τ2dave)

Let us suppose that the monitors observe a дap now. Each monitor moves
to a new set of states corresponding to the possible values for the дap.

M0, {alice }
дap
→ {

〈τ1alice , 0.7, [gap(alice
msд1
=⇒ bob)]〉,

〈τ2alice , 0.3, [gap(alice
msд4
=⇒ dave)]〉,

〈τalice , 1, [gap(none)]〉
} = M1, {alice }

M0, {bob }
дap
→ {

5The initial probability of each state is 1,
since we do not want to in�uence the probability evaluation process (multiplication of

probabilities).

134

10 Decentralized Runtime Veri�cation of Agent Interaction Protocols with Gaps

〈(bob
msд2
=⇒ charlie[0.6]:τ1 |bob

msд3
=⇒ dave[0.4]:ϵ), 0.7, [gap(alice

msд1
=⇒ bob)]〉,

〈τ2bob , 0.7, [gap(bob
msд3
=⇒ dave)]〉,

〈τbob , 1, [gap(none)]〉
} = M1, {bob }

M0, {char lie }
дap
→ {

〈τ1char l ie , 0.6, [gap(bob
msд2
=⇒ charlie)]〉,

〈τ2char l ie , 0.3, gap(charlie
msд5
=⇒ dave)〉,

〈τchar lie , 1, [gap(none)]〉
} = M1, {char lie },

M0, {dave }
дap
→ {

〈ϵ, 0.4, gap(bob
msд3
=⇒ dave)〉,

〈(charlie
msд5
=⇒ dave[0.3]:ϵ |bob

msд3
=⇒ dave[0.7]:τ2dave), 0.3, gap(alice

msд4
=⇒ dave)〉,

〈τdave , 1, [gap(none)]〉
} = M1, {dave }

Since they observed a дap, the monitors do not know what the actual event
was. Because of this, they have to generate more branches, where each branch
represents a possible value for the gap. This is the extend step.

Let us now suppose that the monitors observe eventmsд2. Sincemsд2 is a
ground event, everything is known about it, in particular the monitors know
that its sender is bob and its receiver is charlie . Since the monitors observe
only the gaps and the events that involve the agents in the partition they are in
charge for, the only monitors that observemsд2 are M1, {bob } and M1, {char lie }.

By consumingmsд2, the �rst iteration of the algorithm leads to:

M1, {bob }
bob

msд2
=⇒ char lie
→ {

〈τ1 |bob
msд3
=⇒ dave[0.4]:ϵ, 0.42, [gap(alice

msд1
=⇒ bob),bob

msд2
=⇒ charlie]〉

} = M2, {bob }

M1, {char lie }
bob

msд2
=⇒ char lie
→ {

〈τ1char l ie , 0.36, [gap(bob
msд2
=⇒ charlie),bob

msд2
=⇒ charlie]〉,

〈τ1char l ie , 0.6, [gap(none),bob
msд2
=⇒ charlie]〉

} = M2, {char lie }

It is interesting to analyze what happened in M2, {bob }, where the reduce step
took place. In fact, the ground eventmsд2 makes the other two branches not
valid anymore. More in detail, the second branch was 〈τ2bob , 0.7, [gap(msд3)]〉,
and τ2bob does not accept the eventmsд2 and cannot move to a new state. In
the same way, the PTE in the third branch 〈τbob , 1, gap(none)〉 is τbob , and
τbob cannot accept the event msд2 either. Even though this information seems
important for monitor M2, {bob } only, it is actually of interest also for the other

135

10 Decentralized Runtime Veri�cation of Agent Interaction Protocols with Gaps

monitors. In fact, it allows all of them to know “without any doubt” that the
only event that can be associated with the �rst gap is msд1, since it is the
gap value associated with the only possible branch of M2, {bob }. The monitor
M2, {bob } can inform the other monitors that the only admissible value for the
gap ismsд1. The monitors’ new states become:

M2, {char lie } = {〈τ1char l ie , 0.6, [gap(none),bob
msд2
=⇒ charlie]〉}

M1, {alice } = {〈τ1alice , 0.7, [gap(alice
msд1
=⇒ bob)]〉}

M1, {dave } = {〈τdave , 1, [gap(none)]〉}
This example shows how the knowledge of a monitor can have a positive

impact on the knowledge of the other monitors. In general, this positive impact
can be obtained any time one monitor discovers that one branch is no longer
valid and can hence invalidate the associations of events with gaps therein. This
information may trigger many communication iterations among the monitors,
because, when one monitor is updated it can also “invalidate one branch” and
the related gap-events associations, and may need to inform the others of some
association which is no longer possible. In the previous example, one single
iteration was enough.

As we already anticipated, the proposed approach may lead to false negatives,
due to an optimistic approach of the monitors that stubbornly assume that
observed events are compliant with the protocol, if there is just one possibility
left to make such an assumption. Also in this example, the monitors gave the
correctness of the ground event msд2 (the second event observed) for granted.
But let us suppose that the actual event masked by the дap was not msд1,
butmsд4, and that the successive messagemsд2 was sent from bob to charlie

by mistake and did not comply with the protocol. In this scenario, since the
monitors do not know for sure what the �rst дap was, it is reasonable to
consider msд2 a valid message and hence cut the branch where the gap has
been supposed to bemsд4. This is a problem intrinsically related to the state
estimation approach, since until it is acceptable to observe an event in a state,
the monitors keep track of the related branch. Only when a monitor, observing
an event, loses all its branches it can conclude that a protocol violation took
place because some wrong assumption on gaps – con�rmed by successive
observations – had been made in the past. This delay in the error detection,
which could also be in�nite, can be reduced introducing a threshold on the
probability that a branch must have to be considered valid. In this way, if
after observing an event the probability associated with a branch becomes
lower than a chosen threshold, the monitor can cut that branch and make
error detection possibly quicker.

10.5 Implementation and Experiments

In our experiments we have considered the four following features:

1. the number of agents involved in the MAS we want to verify at runtime;

136

10 Decentralized Runtime Veri�cation of Agent Interaction Protocols with Gaps

Table 10.1 . Average time of the centralized and decentralized algorithms; “sh. PTE”
stands for “shu�ed sub-PTE”.

sh. PTEs # ag. for sh. PTE # op. for sh. PTE Centralized [sec] Decentralized [sec]

10 10 20 6.64 1.26
10 10 15 8.26 1.04
10 5 20 9.85 1.49
10 5 15 9.92 1.28
10 15 15 14.86 1.23
10 5 10 18.35 1.08
10 15 10 20.25 1.61
10 10 10 29.59 1.98
15 5 15 93.34 2.73
15 15 10 116.61 3.56
10 15 20 126.31 25.32
15 10 10 283.70 4.14
15 5 10 349.30 2.23
20 10 10 355.90 3.99
15 5 20 363.67 5.83
20 5 15 558.59 9.28
20 5 20 801.37 7.82
15 20 10 952.43 12.36
20 5 10 1223.85 10.64
20 15 10 1340.29 9.57
20 20 10 1727.26 2.89

2. the number of shu�ed sub-PTEs due to shu�e operators | in the AIP: we
name shu�ed sub-PTE each portion of the PTE composed via a |, so for
example τ3 = alice

msд1
=⇒ bob[0.7]:ϵ | bob

msд3
=⇒ dave[0.4]:ϵ consists of 2

shu�ed sub-PTEs; we point out that when decentralizing the monitoring,
we can associate one di�erent monitor with each shu�ed sub-PTE,
as shu�ed sub-PTE are independent one from the other and can be
monitored in a fully decentralized way;

3. the number of operators for each shu�ed sub-PTE in the AIP;

4. the number of gaps contained in the analyzed traces.

In Table 10.1, we report the results of our experiments. For each row, we
keep the number of shu�ed sub-PTE, agents and operators �xed, while we
change the length of the traces and the percentage of gaps inside each trace.
For each row we executed many di�erent runs and we have measured the total
time required for recognizing the set of 300 randomly generated traces. We
changed the number of gaps contained inside the traces and we tested both
the centralized (Chapter 7) and the decentralized algorithms. In the following,
we reported the graphics obtained from such executions.

Concerning the �gures, the traces used in our experiments contain only gaps
(namely, we run experiments in the worst possible scenario), so the algorithm
makes only expansions and never reductions. We chose traces with only gaps

137

10 Decentralized Runtime Veri�cation of Agent Interaction Protocols with Gaps

to stress the algorithms as much as possible. In real scenarios gaps should be
the exceptions, and perfectly observable events the norm.

In Figures 10.1 and 10.2, both the centralized and the decentralized algorithms
seem to show linear complexity with respect the number of the agents involved,
even if the decentralized algorithm has better performances.

tim
e

[s
]

0

7,5

15

22,5

30

of agents for branch
10 15 20

tim
e

[s
ec

]

of agents for branch
10 15 20

0

7.5

15

22.5

30

of agents for shuffled sub-PTEs

Figure 10.1 . Centralized algorithm: changing number of agents.

tim
e

[s
]

0

0,125

0,25

0,375

0,5

of agents for branch
10 15 200

10 15 20

0.13

0.25

0.38

tim
e

[s
ec

]

of agents for branch

0.5

5
of agents for shuffled sub-PTEs

Figure 10.2 . Decentralized algorithm: changing number of agents.

In Figures 10.3 and 10.4, we can observe that the complexity of the centralized
algorithm seems to grow in a quadratic way, while the decentralized one
seems to grows linearly. This can be explained by the decentralization of the
monitoring of shu�ed sub-PTEs, as if we add one operator to each shu�ed
sub-PTE, the monitor in charge for that shu�ed sub-PTE will need to manage
one more operator only, whereas the centralized monitor will cope with as
many new operators as the shu�ed sub-PTEs in the trace expression. We point

138

10 Decentralized Runtime Veri�cation of Agent Interaction Protocols with Gaps

out that we use “seems to” to re�ect that the complexities emerging from the
�gures have not been computed on the basis of the algorithm, but have been
estimated on the basis of the experiments, and the behaviour in situations
involving a limited number of agents, operators, shu�ed sub-PTEs, might not
be the actual asymptotic behaviour of the algorithm.

tim
e

[s
]

0

35

70

105

140

of operations for branch
10 15 20 25

of operations for branch

tim
e

[s
ec

]

10 15 20 25
0

35

70

105

140

of operations for shuffled sub-PTEs

Figure 10.3 . Centralized algorithm: changing number of operators.

tim
e

[s
]

0,090

0,098

0,105

0,113

0,120

of operations for branch
5 10 155 10 15

0.090

0.098

0.113

0.105

tim
e

[s
ec

]

of operations for branch# of operations for shuffled sub-PTEs

Figure 10.4 . Decentralized algorithm: changing number of operators.

In Figures 10.5 and 10.6, we can appreciate the real advantages of decentraliz-
ation, as – from the �gures – it seems that we have an exponential complexity
for the centralized algorithm and a pseudo-quadratic complexity for the decent-
ralized one. We emphasise that in the decentralized case (Figure 10.6) we were
able to run experiments with 40 shu�ed sub-PTEs, while in the centralized
case we had to stop with half shu�ed sub-PTEs, and with an execution time
hundred times higher. The number of shu�ed sub-PTEs is indeed the feature

139

10 Decentralized Runtime Veri�cation of Agent Interaction Protocols with Gaps

which most impacts the algorithms performance, and this in not a surprise;
intuitively, when we add a new shu�ed sub-PTE we have to interleave it with
all the already existent shu�ed sub-PTEs. In the centralized case, this brings to
a state explosion, while in the decentralized one, since we can decentralize the
monitoring of each shu�ed sub-PTEs, we simply have to add a new monitor.
In this way, we can avoid the state explosion, even if the presence of a new
monitor increases the exchange of messages among the monitors needed to
synchronize information about gaps.

tim
e

[s
]

0,0

175,0

350,0

525,0

700,0

of branches
10 15 2010 15 20

0

175.0

350.0

525.0

tim
e

[s
]

of branches

tim
e

[s
ec

]

700.0

of branches# of shuffled sub-PTEs

Figure 10.5 . Centralized algorithm: changing number of shu�ed sub-PTEs.

tim
e

[s
ec

]

0,0

0,5

1,0

1,5

2,0

of branches
10 20 30 40

of branches

tim
e

[s
ec

]

of shuffled sub-PTEs

Figure 10.6 . Decentralized algorithm: changing number of shu�ed sub-PTEs.

140

10 Decentralized Runtime Veri�cation of Agent Interaction Protocols with Gaps

10.6 Discussion

In this chapter we presented a distributed approach to runtime veri�cation
where we may lack some pieces of information about observed events. With
respect to standard runtime veri�cation, the state estimation approach allows
us to be more reliable, especially in scenarios where partial or total absence of
information is frequent.

For the sake of clarity, we considered only totally uninstantiated gaps. This
choice has been made to make the development of monitors easier. Naturally,
the presence of part of information about the event could be used by the
monitors in order to cut useless branches.

141

11 Conformance checking

“I have forced myself to contradict myself
in order to avoid conforming to my own taste.”

- Marcel Duchamp

We present an algorithm for establishing a �exible conformance re-
lation between two local agent interaction protocols (LAIPs) based
onmappings involving agents andmessages, respectively. Conform-
ance is in fact computed “modulo mapping”: two LAIPs represented
by the corresponding trace expressions τ and τ ′ may involve dif-
ferent agents and use di�erent syntax for messages, but may still
be found to be conformant provided that a given map from entities
appearing in τ to corresponding entities in τ ′ is applied. Since we
use the trace expression formalism tomodel our LAIPs, its expressive
power makes the problem of stating if τ conforms to τ ′ undecidable.
We cope with this problem by over-approximating trace expressions
that may lead to in�nite computations, obtaining a sound but not
complete implementation of the proposed conformance check.

The contents of this chapter are published in
(Ancona, Ferrando, and Mascardi, 2018a)

142

11 Conformance checking

11.1 Introduction

We open the chapter by means of an example. The example allows us to
explain the research question we address and how to solve it using the trace
expressions formalism.

The example scenario is the following: the company AI4Tour develops chat-
bots interacting with human beings in their daily working activities. AI4Tour
business is in the tourist sector and chatbots support tourist operators.

A typical conversation between a tourist agencyTourAдency and the chatbot
TravelChat starts with the request of whether a plane landed1, or a cruise ship
docked, or a train/bus reached the main city station; the chatbot, by accessing
some database or web service in the backend, answers either “yes”, “not yet”,
or “canc” (for canceled), and then becomes available to answer new questions.

The global agent interaction protocol (GAIP) τ which norms the simple mul-
tiagent system mas involving TA (for TourAдency) and TC (for TravelChat)
might look like

τ = (TA
landed
=⇒ TC:ϵ ∨ TA

docked
=⇒ TC:ϵ ∨

TA
train_arr ived
=⇒ TC:ϵ ∨ TA

bus_arr ived
=⇒ TC:ϵ) ·

(TC
yes
=⇒ TA:ϵ ∨ TC

not_yet
=⇒ TA:ϵ ∨ TC

canc
=⇒ TA:ϵ) · τ

where landed stands for “did the plane land?”, docked stands for “did the ship
dock?”, and so on. After receiving one request, the chatbot will react by select-
ing and sending one answer among the three allowed ones. The protocol de�ni-
tion is recursive: after having received and answered one question,TravelChat
is ready to start again.

Another company AI4Movinд develops chatbots that interact with citizens
to provide useful information for planning a safe journey within the city
boundaries.

A typical conversation between the citizen C and the chatbot MovinдChat

starts with C asking if some ship docked (because the city tra�c is highly
impacted by cars and trunks disembarking), or if a train or bus just reached or
will reach the main city station (because C might consider to take that bus or
train, instead of the car); the chatbot answers either “yes”, “in one hour”, “in
two hours”, or “not in the next three hours”, and moves to the state where it
can receive new questions.

The global agent interaction protocol τ ′ governingmas ′ which involves C
and MC (for MovinдChat) is

τ ′ = (C
docked
=⇒ MC:ϵ ∨ C

train_in_station
=⇒ MC:ϵ ∨

1For sake of clarity, we disregard the facts that a �ight is characterized by a code which should
be supplied as a parameter to the query, and that when the chatbot answers and becomes
ready to manage a new query, it might be able to interact with a travel agency di�erent
from TourAдency. The trace expressions formalism supports parameters both at the data
level (to model messages which only di�er for the �ight code) and at the agent level (to
model multiple concurrent conversations among di�erent agents), but taking parameters
into account would make the presentation more complex and we opted for keeping it as
simple as possible.

143

11 Conformance checking

C
bus_in_station
=⇒ MC:ϵ) · (MC

yes
=⇒ C:ϵ ∨ MC

in_1_h
=⇒ C:ϵ ∨

MC
in_2_h
=⇒ C:ϵ ∨ MC

not_in_3_h
=⇒ C:ϵ) · τ ′

When the AI4Tour company acquires AI4Movinд, it decides to keep provid-
ing the services previously o�ered by AI4Movinд, but re-implementing them
with its own technologies, in the most e�cient and less error-prone way.

W.r.t. to the re-implementation of MovinдChat , given that AI4Tour already
developed the TravelChat chatbot which clearly shares some similarities
with MovinдChat , the AI4Tour software engineers start wondering whether
TravelChat can be adapted and reused to play the role of MovinдChat . They
address the question: “can TravelChat safely substituteMovinдChat provided
that suitable mappings between messages and between agents inmas andmas ′

respectively are applied?”
The intuition behind the “mappings” the AI4Tour software engineers are

looking for should be clear. We formally de�ne them as a mapMM :M1 →M2
from the messages that appear in an interaction protocol τaд1 to those that
appear in τ ′aд2, and a map MA : A1 → A2 from the agents that appear in τaд1
to those that appear in τ ′aд2, respectively. To answer their “substitutability”
question, the engineers must:

(1) Move from the global description τ of how TA and TC interact, to TC’s
local agent interaction protocol τTC (LAIP):

τTC = (
landed
⇐= TA :ϵ ∨

docked
⇐= TA :ϵ ∨

train_arr ived
⇐= TA :ϵ ∨

bus_arr ived
⇐= TA :ϵ) ·

(
yes
=⇒TA :ϵ ∨

not_yet
=⇒ TA :ϵ ∨

canc
=⇒TA :ϵ) · τTC

In τTC we omit to write TC as sender or receiver, as this information
is implicit (Section 8.2). Also, if there were messages in τ that involved
TravelChat neither as the sender nor as the receiver, they would not
appear in τTC .

(2) Move from the global description τ ′ of how citizens and MC interact, to
MC’s LAIP, τ ′MC :

τ ′MC = (
docked
⇐= C :ϵ ∨

train_in_station
⇐= C :ϵ ∨

bus_in_station
⇐= C :ϵ) · (

yes
=⇒C :ϵ ∨

in_1_h
=⇒ C :ϵ ∨

in_2_h
=⇒ C :ϵ ∨

not_in_3_h
=⇒ C :ϵ) · τ ′MC

(3) Check whether τTC is conformant to τ ′MC ; this is achieved by looking
for mappings MA among agents and mappings MM among messages
involved in τTC and τ ′MC , such that TravelChat can play the role of
MovinдChat inmas ′, still ensuring that the GAIP τ ′ is respected.

(4) Select one couple of mappings among those computed in step (3), 〈MM ,
MA〉, based on their semantics/pragmatics.

144

11 Conformance checking

(5) Implement a means to allow TravelChat and the citizens to interact, by
forcingTravelChat to apply the selected mappings when interacting with
them.

AgentTourAдency inmas must be necessarily mapped toC inmas ′. From a
semantic and pragmatic point of view, the most reasonable message mapping
is the one that maps docked ∈mas into docked ∈mas ′ (we abuse notation, and
we write msд ∈ mas to mean that msд is one of the messages exchanged by
agents belonging to mas); train_arrived into train_in_station; bus_arrived
into bus_in_station; yes ∈mas into yes ∈mas ′; not_yet into in_2_h; and canc
into not_3_h. The landed message is mapped into no message: when “pre-
tending to be MovinдChat”, TravelChat will never receive a message whose
meaning is close to landed , as τ ′ does not support it. On the other hand,
TravelChat is not able to discriminate between trains and buses arriving in
one or two hours. The mapping of not_yet into in_2_h is a cautious choice and
the citizen will never receive the message in_1_h, even if it would be supported
by τ ′.

From a purely syntactic point of view, and considering protocol speci�c-
ations only – hence, disregarding the actual services and actions that are
triggered by reception of messages –, many other mappings would respect the
protocol conformance, including the one that maps canc into yes ∈mas ′ and
yes ∈mas into not_3_h.

The research question that we address in this chapter is the one in step
(3) above. We point out that such research question cannot be answered by
using ontology matching algorithms (Euzenat and Shvaiko, 2007). Ontology
matching techniques could indeed be exploited in step (4) of the process, as we
discuss in the Conclusions, but not in step (3): an ontology represents static
knowledge, not dynamic behaviour. An agent interaction protocol represents
dynamic behaviour, not static knowledge. Checking whether a protocol is
conformant to another must necessarily take such dynamics into account,
which is not required in an ontology matching process and which raises
many subtle issues. For example, when moving from τ to τ ′ to substitute aд′,
aд must be capable to react at least to all the “passive events” (for example,
receiving a message) that aд′ can address, and to perform at most all the “active
events” (for example, sending a message) that aд′ can perform, at any stage of
the protocol. This requirement cannot be satis�ed by an ontology matching
approach, where it does not even make sense, whereas it is well known in
the protocol conformance literature. Depending on the expressiveness of the
language used to specify GAIPs, verifying that aд can actually substitute aд′
in a safe way may be more or less complex, or even impossible to perform
in an exact way. As an example, recursive protocol de�nitions are usually
disregarded in the literature as they are extremely complex to manage. Since
trace expressions, which we use for modeling GAIPs and LAIPs, supports
recursion, the existing conformance checking algorithms are not powerful
enough for our needs.

Our contribution is an algorithm for addressing step (3) above when GAIPs

145

11 Conformance checking

are speci�ed as trace expressions. To demonstrate the feasibility of our ap-
proach, we present an example implemented in JADE (Bellifemine, Caire, and
Greenwood, 2007).

11.2 State of the art

The works closer to our proposal come from Baldoni and Baroglio who, to-
gether with their colleagues, introduced the notion of syntactic conformance in
the context of interaction protocols for MAS and Service Oriented Computing
(SOC) scenarios, starting from 2004. Conformance is based on the notion of
interoperability among the entities’ policies (e.g. a BPEL process (The OASIS
Web Services Business Process Execution Language (WSBPEL) Technical Com-
mittee, 2007), similar to some extent to our LAIPs) with respect to interaction
protocols (e.g. a WS-CDL choreography (Kavantzas et al., 2005), similar to our
GAIPs), through the use of �nite state automata. While in (Baldoni et al., 2005a;
Baldoni et al., 2004, 2005b) protocols were limited to involve two entities only,
(Baldoni et al., 2006) presents an extension supporting multiple parties. A
further extension is presented in (Baldoni et al., 2009) where decision points
are explicitly represented.

Besides the fact that we address the conformance between LAIPs, there
are other di�erences between those works and ours: �rst, they assume that
entities/messages involved in the policy and in the protocol respectively, are
exactly the same in order for the conformance check to have some chance to
succeed: no notion of mapping is foreseen; second, the expressive power of
trace expressions is higher than the expressive power of WS-CDL/BPEL. The
presence of expansive subtraces, introduced later on, makes trace expressions
able to recognize context-free and non context-free languages, and raises
technical problems that do not show up when less expressive formalisms are
used.

Among the works by Baldoni and Baroglio’s team, however, the most inspir-
ing for our research is (Baldoni, Baroglio, and Capuzzimati, 2014b), recently
improved and extended in (Baldoni et al., 2018). That work presents an agent
typing system, where types are de�ned as commitments (Yolum and Singh,
2002). The typing includes a notion of compatibility, based on subtyping, which
allows for the safe substitution of agents to roles along an interaction that is
ruled by a commitment-based protocol. The proposal is implemented in the
2COMM framework (Baldoni, Baroglio, and Capuzzimati, 2013) which is based
on the Agent & Artifact meta-model (Omicini, Ricci, and Viroli, 2008), and
exploits JADE and CArtAgO (Ricci, Piunti, and Viroli, 2011). Considering the
LAIP associated with an agent as its “communicative type” is an almost natural
idea in our approach also. The LAIP makes the communicative interface of an
agent explicit and can be used both to type check an agent w.r.t. the possibility
of entering a MAS normed by some GAIP, and to de�ne a subtyping relation
which we name “is conformant to” relation. The main di�erence between
our approach and the one discussed in (Baldoni, Baroglio, and Capuzzimati,
2014b) lies in the adopted formalism and the generality: commitments without

146

11 Conformance checking

mappings there, trace expressions with mappings here.
Many other works besides those mentioned above aim at de�ning and testing

conformance in the SOC community, including (Bordeaux et al., 2004; Bravetti
and Zavattaro, 2007a,b; Busi et al., 2005). None of them uses formalisms which
are as powerful as context-free grammars, or more, and none integrates the
notion of agents and messages mappings. Also, some of them are limited to
two-party protocols.

When moving to the MAS realm, we can devise the same di�erences between
our approach and the others as those identi�ed for SOC approaches: lower
expressive power of the adopted formalisms and less generality, due to the
absence of mappings in the conformance de�nition. Among the most notable
contributions to protocol conformance, we may mention (Endriss et al., 2003)
where Endriss et al. identify three levels of conformance, weak, exhaustive, and
robust, and explore how a speci�c class of logic-based agents can exploit an
AIP formalism based on simple if-then rules to check conformance a priori or
enforce it at runtime. In a similar way, Alberti et al. exploit the SCIFF abductive
proof-procedure (Alberti et al., 2005) for both a priori and runtime veri�cation
of compliance of agent interactions (Alberti et al., 2006). In (Chopra and Singh,
2006), Chopra and Singh formalize the notions of conformance, coverage and
interoperability. In (Chopra and Singh, 2007) a formal interoperability test for
agents is presented. That work considers the presence of two agents only, but
in an open scenario where agents can behave di�erently from the protocol
speci�cation. Finally, in (Giordano and Martelli, 2007), Giordano and Martelli
address the problem of conformance between an agent and a protocol through
an automata-based technique, when the speci�cation of the protocol is given
in a temporal action logic.

11.3 LAIP Conformance Modulo Mapping

gaips , agents, interactions, and messages Let mas be a multia-
gent system governed by some GAIP modeled by trace expression τ . We de�ne
GAIP(mas) as τ . Let τ be a trace expression involving all and only agents
A and interactions I. We de�ne AG(τ) as A, INT (τ) as I, and MSG(τ) as
{msд | int ∈ INT (τ) andmsд = MSG(int)}.

The de�nitions of AG, INT and MSG hold for both trace expressions and
projected trace expressions.

We �rst give a simpler, but stronger, de�nition of compliance which does
not allow renaming of messages and agents.

De�nition 12. Given two LAIPs τaд1 and τ ′aд2, we say that τaд1 is conformant
to τ ′aд2, written τaд1≤τ

′
aд2, i� the following conditions are coinductively veri�ed:

• ∀msg,aд if∃τ ′′aд1 s.t.τaд1
msg
=⇒aд
→ τ ′′aд1, then∃τ ′′′aд2 s.t.τ ′aд2

msg
=⇒aд
→ τ ′′′aд2∧τ

′′
aд1≤τ

′′′
aд2;

• ∀msg,aд if∃τ ′′′aд2 s.t.τ ′aд2
msg
⇐=aд
→ τ ′′′aд2, then∃τ ′′aд1 s.t.τaд1

msg
⇐=aд
→ τ ′′aд1∧τ

′′
aд1≤τ

′′′
aд2;

147

11 Conformance checking

• {τ ′′′aд2 | ∃msg,aд.τ ′aд2

msg
=⇒aд
→ τ ′′′aд2} , ∅ implies {τ ′′aд1 | ∃msg,aд.τaд1

msg
=⇒aд
→

τ ′′aд1} , ∅.

In the following formalization we assume that aд1 is an agent in mas ,
and aд2 an agent in mas ′, and de�ne τ = GAIP(mas), τ ′ = GAIP(mas ′),
τaд1 = Π(τ ,aд1), τ ′aд2 = Π(τ ′,aд2) , A1 = AG(τaд1), A2 = AG(τ ′aд2),M1 =

MSG(τaд1),M2 = MSG(τ ′aд2).
As introduced in Section 11.1, we consider a map MM : M1 → M2 from

the messages that appear in τaд1 to those that appear in τ ′aд2, and a map
MA : A1 → A2 from the agents that appear in τaд1 to those that appear in
τ ′aд2.

A more general conformance relation modulo mappings can be de�ned in
terms of the basic conformance relation of De�nition 12.

De�nition 13. Given two LAIPs τaд1 and τ ′aд2, and two mappings MM and
MA on messages and agents, respectively, we say that τaд1 is conformant to τ ′aд2
moduloMM andMA , written τaд1≤ 〈MM,MA 〉τ

′
aд2, i� 〈MM ,MA〉(τaд1)≤τ

′
aд2.

With 〈MM ,MA〉(τaд1)we denote the trace expression obtained from τaд by re-

placing all the interactions
msg
=⇒aд and

msg
⇐=aд with

MM (msg)
=⇒ MA (aд) and

MM (msg)
⇐= MA (aд),

respectively.

Intuitively, the relation τaд1≤ 〈MM,MA 〉τ
′
aд2 ensures that aд1 can safely substi-

tute aд2 inmas ′, provided that mappings MM and MA are applied to messages
and agents in τaд1, respectively.

Theorem 4. Given three LAIPs τaд1, τaд2 and τaд3:

τaд1≤τaд2 ∧ τaд2≤τaд3 =⇒ τaд1≤τaд3

Proof. By construction from De�nition 12. �

Theorem 5. Given three LAIPs τaд1, τaд2 and τaд3:

τaд1≤ 〈MM,MA 〉τaд2 ∧ τaд2≤ 〈M ′M,M ′
A
〉τaд3

=⇒

τaд1≤ 〈M ′′
M
,M ′′
A
〉τaд3 ∧ M ′′

M
= M ′

M
◦MM ∧ M ′′A = M ′A ◦MA

Proof. From De�nition 13 we know that

τaд1≤ 〈MM,MA 〉τaд2 ⇐⇒ < MM ,MA > (τaд1)≤τaд2

From De�nition 13 we know that

τaд2≤ 〈M ′
M
,M ′
A
〉τaд3 ⇐⇒ < M ′

M
,M ′A > (τaд2)≤τaд3

Thanks to Theorem 4, we can deduce that

< M ′
M
◦MM ,M

′
A ◦MA > (τaд1)≤τaд3

that is equivalent to τaд1≤ 〈M ′
M
◦MM,M ′

A
◦MA 〉τaд3. �

148

11 Conformance checking

An algorithm for conformance. Given the de�nitions 12 and 13, a �rst
question that may arise is whether there exists an algorithm for deciding if the
compliance relation holds for a pair of trace expressions, and, in case of the
more general notion of conformance modulo mappings, if such mappings can
be computed. Unfortunately, the problem is undecidable even for the simpler
conformance relation of De�nition 12; this can be derived by the fact that a
context-free grammar can be encoded into a trace expression, and that the
problem of inclusion between context-free languages (which is known to be
undecidable) can be reduced to the conformance problem between two trace
expressions. Despite this negative result, it is still interesting to investigate
the existence of algorithms which are sound (even though not complete) w.r.t.
the de�nition of conformance between trace expressions.

We de�ne the merging of two maps in the following way: let MM :M1→
M2 and M ′

M
:M1′→M2′ be two maps among messages:

if ∃msд∈M1∩M1′ .MM(msд) , M ′
M
(msд)

thenmerдe(MM ,M
′
M
) = ∅

elsemerдe(MM ,M
′
M
) = M ′′

M
:M1∪M1′→M2∪M2′ such that M ′′

M
=

MM ∪M
′
M

.
In other words, merging two maps consists in computing the union of

the elements in the maps, unless there is some con�ict, namely, some ele-
ment is mapped to two di�erent elements in the two maps. In this case, the
maps cannot be merged (the merged map is empty). For instance, if MM =
{msд1 7→ msд2,msд3 7→ msд4} and M ′

M
= {msд3 7→ msд4,msд5 7→ msд6},

the merged map is M ′′
M
= {msд1 7→ msд2,msд3 7→ msд4,msд5 7→ msд6}. If

MM = {msд1 7→ msд2} and M ′
M
= {msд1 7→ msд3}, their merged map is

empty.
The same de�nition can be adopted for merging maps of agents.
Given two maps MM and MA , a sending interaction

msд
=⇒R can substitute a

sending interaction
msд′
=⇒R′ in the context of MM and MA i� merдe({msд 7→

msд′},MM) , ∅ andmerдe({R 7→ R′},MA) , ∅. The de�nition for a receiving
interaction

msд
⇐=S substituting a receiving interaction

msд′
⇐=S ′ is similar.

The computation of τaд1≤ 〈MM,MA 〉τ
′
aд2 is carried out by the “isConformant”

algorithm. The algorithm starts from two initial agent and message maps, and
incrementally adds to them those mappings which are necessary to ensure
agents interoperability. Consequently, it is possible to obtain partial maps
where some messages and agents have not been mapped to anything at the
end of the computation. Partial maps must be completed (namely, they must
become total maps and be de�ned on all the elements in their domain), in
order to be used in practice. Completion can be achieved by adding dummy
elements in the range, and associate the elements in the domain that had
no corresponding element in the range, with such dummy elements. The
completion step is necessary to ensure that, when actually used to substitute
aд1 ∈ mas to aд2 ∈ mas ′, the maps returned by the algorithm can be applied
to all the agents and messages appearing in τaд1. The isConformant algorithm

149

11 Conformance checking

operates by cases, and the following implication holds:
τaд1≤ 〈cMM,cMA 〉τ

′
aд2 ⇐=

〈MM ,MA〉 = isConformant(τaд1, τ ′aд2, ∅, {aд1 7→ aд2}) and 〈MM ,MA〉 ,
〈∅, ∅〉 and complete(MM) = cMM and
complete(MA) = cMA , where complete is the map completion step sketched
above.
Conformance can be lifted to global protocols:

τ≤τ ′ ⇐⇒ ∀aдi ∈mas .∃aд′j ∈mas ′ .τaдi≤τ
′
aд′j

τ≤ 〈MM,MA 〉τ
′ ⇐⇒ ∀aдi ∈mas .∃aд′j ∈mas ′ .τaдi≤ 〈MM,MA 〉τ

′
aд′j

Given a projected trace expression τaд ,

active_int(τaд) = {
msд
=⇒R | ∃τ ′aд,τaд

msд
=⇒R
→ τ ′aд}.

Given a projected trace expression τaд ,

passive_int(τaд) = {
msд
⇐=S | ∃τ ′aд,τaд

msд
⇐=S
→ τ ′aд}.

In Chapter 12 we will present the concept of over-approximation of a
trace expression in mode detail. For now, it is enough to know that the
over-approximation of a trace expression is a trace expression recognizing
a superset of the traces recognized by the �rst one. As we will see, we use
over-approximation to remove expansive terms from inside trace expressions.
We need this additional step because our approach does not support the com-
parison between two expansive terms.

Theorem 6. Given an expansive concatenation τaд = τ1·τ2 and its over-
approximation τ̃aд = τ̃1·τ2 (obtained using the algorithm presented in Chapter
12):

1. passive_int(τ2) = {} =⇒ τ1·τ2≤ 〈IdM, IdA 〉τ̃1·τ2

2. active_int(τ2) = {} =⇒ τ̃1·τ2≤ 〈IdM, IdA 〉τ1·τ2

where IdM and IdA are the identity functions which map each message and
each agent in itself, respectively.

Proof. Since an expansive concatenation is used to balance sequences of in-
teractions, e.g. {msдn1msдn2 }, the over-approximation obtained using the al-
gorithm de�ned in Chapter 12 is the regular superset {msд∗1msд∗2}. The idea is
to identify which agent decides the number of interactions for the queue τ2.
An agent sending n messages is interoperable in a context where the receiver
is supposed to receive any number ∗. On the other hand, an agent which is
able to receive any number ∗ of messages is interoperable in a context where
the sender will send exactly n messages. When passive_int(τ2) = {}, we fall
in the �rst scenario, where aд is able to send n messages in the queue τ2, and
the receiver in τ̃1·τ2 is able to receive any number ∗ of that messages. Thus aд
can interoperate in the over-approximated scenario. In the same way, when
active_int(τ2) = {}, we fall in the second scenario, where aд is able to receive

150

11 Conformance checking

any number ∗ of messages in the over-approximated scenario, and the sender
in τ1·τ2 is able to send a �xed number n of that messages. Thus aд can interop-
erate in the expansive scenario. Since the over-approximation preserves the
structure of the sub-terms and the sets of agents and interactions, we know that
among the possible maps that can be used there are also the identity functions
IdM , IdA (we are only changing the number of messages exchanged, we do
not change the structure of our protocols during the over-approximation). �

Conjecture 11.3.1 (Soundness). The algorithmic implementation of the con-
formance test is sound. If given two LAIPs τaд and τ ′aд′ , the algorithm returns a
couple of maps MM and MA , we know that τaд≤ 〈MM,MA 〉τ

′
aд′ is satis�ed and

consequently we can substitute the agent aд′ using aд preserving the system
interoperability.

Claim 11.3.1 (No Completeness). The algorithmic implementation of the con-
formance test is not complete.

Proof. When we implement the conformance test for the expansive trace ex-
pressions we tackle only a subset of the possible combinations. For instance,
we are not able to compare an expansive concatenation with an expansive
shu�e, consequently, it could be possible to show how two expansive trace ex-
pressions representing the same LAIP using di�erent operators are considered
not conformant by our algorithm (even if they are the same). �

11.4 Conformance algorithm: pseudo-code

The notion of τaд1≤ 〈MM,MA 〉τ
′
aд2 is de�ned by cases.

non expansive trace expressions The pseudo-code for the conform-
ance check (constructed on top of De�nition 13) is described by the following
recursive function:
function isConformant
input: two non-expansive trace expressions τaд1 and τ ′aд2, a (partial) map
among messages MM , a (partial) map among agents MA
output: one among the many possible couples of maps 〈MM ,MA〉 that allow
aд1 to substitute aд2 (〈∅, ∅〉 means that the substitution is not possible)
if τaд1 = ϵ and τ ′aд2 = ϵ , or a cycle has been detected
then return 〈MM ,MA〉
else if the three conditions below hold

1. each sending interaction
msдA
=⇒ aдA s.t. τaд1

msдA
=⇒ aдA
→ τ1aд1 can substitute

one sending interaction
msдB
=⇒ aдB s.t. τ ′aд2

msдB
=⇒ aдB
→ τ ′1aд2 in the context

of MM and MA , M ′
M

and M ′
A

are the non-empty maps obtained by
merging the mappings generated by such substitutions with MM and
MA respectively, and 〈SMM , SMA〉 = isConformant(τ1aд1 , τ ′1aд2 , M

′
M

,
M ′
A

) , 〈∅, ∅〉;

151

11 Conformance checking

2. each receiving interaction
msдB
⇐= aдB s.t. τ ′aд2

msдB
⇐= aдB
→ τ ′1aд2 can be substi-

tuted by one receiving interaction
msдA
⇐= aдA s.t. τaд1

msдA
⇐= aдA
→ τ1aд1 , M ′M

and M ′
A

are the non-empty maps obtained by merging the mappings
generated by such substitutions with MM and MA respectively, and
〈RMM ,RMA〉 = isConformant(τ1aд1 , τ ′1aд2 , M

′
M

, M ′
A

) , 〈∅, ∅〉;

3. if there is one sending interaction available for τ ′aд2, there must be also
at least one sending interaction available in τaд1 that can be substituted
by it in the context of MM and MA .

then return 〈merдe(SMM ,RMM),merдe(SMA ,RMA)〉

else return 〈∅, ∅〉
endif

We can now state that
τaд1≤ 〈cMM,cMA 〉τ

′
aд2 ⇐=

〈MM ,MA〉 = isConformant(τaд1, τ ′aд2, ∅, {aд1 7→ aд2}) and 〈MM ,MA〉 ,
〈∅, ∅〉 and complete(MM) = cMM and
complete(MA) = cMA

We point out that the couple of maps 〈cMM , cMA〉 that make τaд1 and
τ ′aд2 conformant is just one of the possibly many existing ones. In fact, in the
pseudo-code above, there are some non-deterministic choices due to the choice
of one sending interaction in (1) and one receiving interaction in (2), among
possibly many available ones. In order to obtain all the possible maps, we
should “backtrack” on all the choice points and collect the solutions we obtain
making di�erent choices. This “all-solutions” approach is actually supported
by the implemented algorithm, which – being implemented in Prolog – makes
the exploitation of backtracking extremely easy to program.

The conformance check described in the pseudo-code is inspired by the
one described in (Baldoni et al., 2005b, 2006), but it tackles two problems that
did not arise there. One is related with mappings MM and MA which are
incrementally extended while the conformance check goes on, and are �nally
output when the algorithm terminates. The second is that in (Baldoni et al.,
2005b, 2006) protocols are not recursive and hence taking care of cycles is
not necessary. Since we may handle recursive trace expressions, we have to
remember the history of the subtraces analyzed so far in order to identify if a
subtrace has already been checked. Like the trace expressions operational se-
mantics, also the conformance check is de�ned in a coinductive way and, when
it discovers that two trace expressions have been already checked previously,
it can terminate with a positive answer and avoid the in�nite loop.

When at least one of the trace expressions involved in the conformance
check is expansive, the algorithm becomes much more complex: conformance
checking of expansive trace expressions may be undecidable, and we may need
to over-approximate the expansive trace expression τ ′ with a non-expansive

152

11 Conformance checking

one, to check whether τ is conformant to it (Theorem 6).
For what concerns expansive trace expressions, unfortunately we cannot be

precise in the same way as we are for the non expansive counterpart.
In Theorem 6, given an expansive concatenation τ1·τ2, we showed that

1. passive_int(τ2) = {} =⇒ τ1·τ2≤ 〈IdM, IdA 〉τ̃1·τ2

2. active_int(τ2) = {} =⇒ τ̃1·τ2≤ 〈IdM, IdA 〉τ1·τ2

Following Theorem 6, we can compare two expansive trace expressions through
their over-approximation.
function isConformant
input: one non-expansive trace expression τaд1 and one expansive concatena-
tion τ ′aд2 = τ ′1 ·τ ′2 , a (partial) map among messages MM , a (partial) map among
agents MA
output: one among the many possible couples of maps 〈MM ,MA〉 that allow
aд1 to substitute aд2 (〈∅, ∅〉 means that the substitution is not possible)
if active_int(τ ′2) = {}
then return isConformant(τaд1, τ̃ ′aд2, MM , MA)
else return 〈∅, ∅〉

The pseudo-code above is the implementation of the following intuition.
Given an expansive concatenation τ1·τ2, we have that

active_int(τ2) = {} =⇒ τ̃1·τ2≤ 〈IdM, IdA 〉τ1·τ2 (Theorem 6)

And, given three trace expressions τaд1, τaд2 and τaд3 we have that

τaд1≤ 〈MM,MA 〉τaд2∧τaд2≤ 〈M ′M,M ′
A
〉τaд3 =⇒

τaд1≤ 〈M ′′
M
,M ′′
A
〉τaд3∧M

′′
M
= M ′

M
◦MM∧M

′′
A = M ′A ◦MA (Theorem 5)

Consequently, we can conclude that, given an expansive concatenation τ1·τ2
and a non-expansive trace expression τ , we have that

active_int(τ2) = {} ∧ τ≤ 〈MM,MA 〉τ̃1·τ2

=⇒

τ≤ 〈MM,MA 〉τ1·τ2

function isConformant
input: one expansive concatenation τaд1 = τ1·τ2 and one non-expansive trace
expression τ ′aд2 , a (partial) map among messages MM , a (partial) map among
agents MA
output: one among the many possible couples of maps 〈MM ,MA〉 that allow
aд1 to substitute aд2 (〈∅, ∅〉 means that the substitution is not possible)
if passive_int(τ2) = {}
then return isConformant(τ̃aд1, τ ′aд2, MM , MA)
else return 〈∅, ∅〉

The pseudo-code above is the implementation of the following intuition.
Given an expansive concatenation τ1·τ2, we have that

passive_int(τ2) = {} =⇒ τ1·τ2≤ 〈IdM, IdA 〉τ̃1·τ2 (Theorem 6)

153

11 Conformance checking

And, given three trace expressions τaд1, τaд2 and τaд3 we have that

τaд1≤ 〈MM,MA 〉τaд2∧τaд2≤ 〈M ′M,M ′
A
〉τaд3 =⇒

τaд1≤ 〈M ′′
M
,M ′′
A
〉τaд3∧M

′′
M
= M ′

M
◦MM∧M

′′
A = M ′A ◦MA (Theorem 5)

Consequently, we can conclude that, given an expansive concatenation τ1·τ2
and a non-expansive trace expression τ , we have that

passive_int(τ2) = {} ∧ τ̃1·τ2≤ 〈MM,MA 〉τ

=⇒

τ1·τ2≤ 〈MM,MA 〉τ

The conformance with an expansive shu�e is very similar. It is enough
to show – in the same way as for expansive concatenations – that given an
expansive τ1 |τ2, we have that τ1 |τ2≤ 〈MM,MA 〉τ̃1 |τ2.

11.5 Implementation and Experiments

Given two MASmas andmas ′ ruled by τ = GAIP(mas) and τ ′ = GAIP(mas ′)

respectively, the steps for using an agent involved inmas insidemas ′ are the
following:

1. identify the agent aд1 ∈mas to be used inmas ′;

2. generate the set of agents and maps that ensure τaд1 conformance
{(aд2, 〈MM ,MA〉)|aд2 ∈mas ′,τaд1≤ 〈MM,MA 〉τ

′
aд2};

3. select one pair of agents and maps (aд2, 〈MM ,MA〉) from the set, based
on domain-dependent criteria that might involve message similarity,
similar behaviours of the mapped agents, and so on;

4. generate an interface i for aд1 driven by (aд2, 〈MM ,MA〉);

5. substitute aд2 inmas ′ with the “interfaced version” of aд1: the agents
in the MAS obtained via this substitution still respect τ ′, because of step
(2).

The notion of interface introduced in step (4) is related to the actual use of
the maps generated during the conformance check and it is meant as a logical
component o�ering a “bridging service”, that can be implemented in many
di�erent ways. Hence, the interface i generated in step (4) realizes the map-
driven translations needed by agents in mas and mas ′ to interoperate. Each
time aд1 ∈ mas performs the action of sending a message msд1 to an agent
aд1r ∈ mas , the interface i “intercepts” (from a logical point of view) msд1,
translates it into MM(msд1) =msд2, and forwardsmsд2 to MA(aд1r) ∈ mas ′.
In the same way, each time an agent aд2s ∈ mas ′ sends a message msд3 to
aд2 ∈ mas ′, the interface intercepts msд3, looks for a message msд4 that aд1
can receive in the current protocol state s.t. MM(msд4) =msд3, translatesmsд3
intomsд4, and forwards it to aд1.

154

11 Conformance checking

As an example, let us consider a GAIP τ representing the protocol where
an agent Buyer (Buy) asks to an agent Seller (Sel) for a resource and if the
resource is available, the Seller can give it in exchange of money, otherwise
the Seller informs the Buyer of the unavailability.

τ = (Buy
r es?
=⇒ Sel):

(Sel
r es
=⇒ Buy:Buy

money
=⇒ Sel :ϵ∨Sel

no
=⇒ Buy:τ)

Let us consider another similar GAIP τ ′ de�ning a book-shop protocol where
an agent Client (Cl) asks for a book to an agent BookShop, and again if the
book is available the BookShop (Shop) agent sells it for a given amount of euros,
otherwise a no_avbl message is returned.

τ ′ = (Cl
book?
=⇒ Shop):

((Shop
book
=⇒ Cl :Cl

euros
=⇒ Shop:ϵ)∨(Shop

no_avbl
=⇒ Cl :τ ′))

We want to check if τ is conformant to τ ′, τ≤τ ′. From the de�nition of con-
formance between global protocols, for each agent aд ∈ τ we must �nd at
least one agent aд′ ∈ τ ′ s.t. τaд≤ 〈MM,MA 〉τ

′
aд′ . First of all, we generate the local

perspectives LAIPs of τ and τ ′ through projection.

τBuy = (
r es?
=⇒Sel):((

r es
⇐=Sel :

money
=⇒ Sel :ϵ)∨(

no
=⇒Sel :τBuy))

τSel = (
r es?
⇐=Buy):((

r es
=⇒Buy :

money
⇐= Buy :ϵ)∨(

no
⇐=Buy :τSel))

τ ′Cl = (
book?
=⇒ Shop):((

book
⇐=Shop :

euros
=⇒ Shop :ϵ)∨(

no_avbl
⇐= Shop :τ ′Cl))

τ ′Shop = (
book?
⇐= Cl):((

book
=⇒Cl :

euros
⇐= Cl :ϵ)∨(

no_avbl
=⇒ Cl :τ ′Shop))

Then we apply the rules deriving from De�nition 13, obtaining that (Figure
11.1c) τBuy≤ 〈MM,MA 〉τ

′
Cl with MM = {res? 7→ book?, res 7→ book,money 7→

euros, no 7→ no_avbl} and MA = {Buy 7→ Cl , Sel 7→ Shop} and (Fig-
ure 11.1d) τSel≤ 〈MM,MA 〉τ

′
Shop with the same maps. From this, we derive that

τ≤ 〈MM,MA 〉τ
′.

In this example we had no prior knowledge on possibly correct mappings.
In many real scenarios, however, some of the correct mappings among mes-
sages and agents, respectively, are known in advance. The values ∅, {aд1 7→
aд2} used to initialize the maps in the de�nition of τaд1≤ 〈cMM,cMA 〉τ

′
aд2 i�

〈MM ,MA〉 = isConformant(τaд1, τ ′aд2, ∅, {aд1 7→ aд2}) correspond to the
worst case where the developer has no knowledge at all about the possible
correct mappings, and wants to generate all of them for further inspection.
If the developer knows that the initial associations modelled by MM0 and
MA0 must hold, he/she can run isConformant(τaд1, τ ′aд2, MM0 , MA0), forcing
the algorithm to extend such initial knowledge with new associations or to
answer that, with these maps, the protocols are not conformant. This would
be the case for example in Software Product Line applications and in evolving
IoT scenarios where the developer knows which components in the previous
product version/system should be replaced by which in the new one, and wants
to check if it is possible, respecting the existing communication protocols.

155

11 Conformance checking

Buyer Seller

res?

res

money

no

(a)

Client BookShop

book?

book

euros

no_avbl

(b)

Buyer i BookShop

book?

book

euros

no_avbl

res?

res

money

no

(c)

Client i Seller
res?

res

money

no

book?

book

euros

no_avbl

(d)

Figure 11 . 1 . (a) and (b) MAS presented in the example; (c) Buyer substitutes Client
through the interface i driven by MA = {Buyer 7→ Client, Seller 7→
BookShop}, MM = {res? 7→ book?, res 7→ book,money 7→ ack, no 7→
no_avbl}); (d) Seller substitutes BookShop with an interface driven by
the same maps.

Although introducing the notion of interface for showing how we can use
the mappings generated during the conformance check (step (5) presented in
Section 11.1 deals with exploiting mappings in practice) makes the presentation
almost simple and intuitive, the actual implementation of such an interface re-
quires to take care of many aspects dependent on the adopted MAS framework.
Step (5) is in fact heavily application-dependent and can be faced in di�erent
ways, depending on the applications constraints: it would be possible for ex-
ample to insert a “translator agent” intomas ′, that intercepts and manages all
interactions involving aд; or to create a wrapper for agent aд that allows it to
automatically translate incoming and outgoing messages according to MM ; or
even to automatically modify aд’s source code, if available, to hard-wire the
MM mapping at source code level. Whatever the approach is, all the agents in
mas ′ should be aware that aд′ has been substituted by aд, in order to handle
communication properly.

To demonstrate how to exploit the maps generated by the conformance
testing to substitute JADE agents with other JADE agents, we adopted an
automatic source code translation approach. The methodology we followed
consists in three steps:

1st step, conformance checking (corresponding to steps (1) , (2)
and (3) presented at the very beginning of this section)
The algorithm presented in Section 11.3 is fully implemented in SWI-Prolog.
Prolog has been chosen thanks to its built-in support to cyclic terms, coinduc-
tion, and for the possibility to use backtracking for generating all the existing
maps. The implementation of the algorithm is < 400 LOC.

156

11 Conformance checking

2nd step, substitution (corresponding to step (4)) Let us
suppose that aд1 ∈ mas can substitute aд2 ∈ mas ′ with maps MA and MM .
For demonstrating how substitution can be put into practice we have opted
for a basic approach where we apply the maps to the source code of aд1, and
we use the modi�ed source codemap(aд1) instead of the source code of aд2 in
mas ′: we operate on the Java �le containing the JADE class implementing aд1
and we substitute all the occurrences of aдi with MA(aдi) and all occurrences
of msдi with MM(msдi). This substitution step is also implemented in SWI-
Prolog (< 30 LOC).

3rd step, execution (corresponding to step (5)) We recompile
map(aд1) and we execute mas ′ with map(aд1) instead of aд2. Despite being
simple and applicable only when the source code is available, this approach
demonstrates how we can actually use the maps generated during the con-
formance check, and has been adopted for all the examples shown in this
chapter.

11.6 Discussion

In this chapter we have presented a conformance modulo mapping algorithm
suitable for checking conformance between local protocols speci�ed as (pro-
jected) trace expressions, together with its implementation and usage example.
The chapter presents a general solution to the problem with as few constraints
as possible, to make it reusable in as many situations as possible, but the actual
scenarios where we believe that our approach can be more pro�tably exploited
involve conformance between di�erent versions of the same LAIP or LAIPs
which are known to be similar, like the ones presented in Sections 11.1 and
11.5. As another example, a self-driving car may interact with other cars, lights,
etc., according to the current road norms (LAIP τ1). Norms change and the
new LAIP to which the car must conform, becomes τ2. Which transforma-
tions (mappings) should we implement over τ1 to ensure it is syntactically
conformant to τ2? The developer in charge of migrating τ1 to τ2 can use our
algorithm for having guarantees on the syntactic compliance, although he/she
cannot have guarantees that semantics is preserved: a human is required to
�nally select and validate the produced mappings. We think that semantic
compliance will never be fully automatized, and for this reason we expect
that our algorithm should be used in scenarios where LAIPs should not be
re-aligned frequently.

157

Part V

Combining static and runtime veri�cation

Runtime veri�cation and Static veri�cation are two di�erent veri�cation ap-
proaches. Nonetheless, it is not surprising that during the last decade many
works have been studying the possible combination of these two disciplines.
Also during the Ph.D. program, we looked into these aspects and we propose
two possible approaches.
In Chapter 12, we present our �rst attempt, where we show how to translate
a trace expression into an equivalent Büchi Automaton in order to verify
statically our speci�cations using the SPIN model checker.
In Chapter 13, we present the work that has been done during the visit to the
University of Liverpool. The main idea consists in using trace expressions to
represent the abstract environment used for model checking the MAS. In this
way, after the model checking process has �nished, we can still use the trace
expression to verify at runtime the MAS – with the real environment – in
order to understand if there are violations of the assumptions that have been
done during the static veri�cation process.

158

12 Trace expressions model checking

“Trust, but Verify.”
- Old Russian proverb

In this chapter, we propose an algorithm to check LTL properties
satis�ability on trace expressions. To do this, we show how to trans-
late a trace expression into a Büchi Automaton in order to realize an
Automata-Based Model Checking. We show that this translation
generates an over-approximation of the trace expression leading us
to obtain a sound procedure to verify LTL properties. Once we have
statically checked a set of LTL properties, we can conclude that: (1)
the trace expression is formally correct (2) since we use this trace
expression to generate monitors checking the runtime behavior of
the system, the LTL properties veri�ed by this trace expression are
also veri�ed by the monitored system.

The contents of this chapter are published in
(Ferrando, 2019)

159

12 Trace expressions model checking

12.1 Introduction

As already introduced in Section 3.5.2, Runtime Veri�cation (RV) is a software
veri�cation technique that complements formal static veri�cation (like Model
Checking (Clarke, Grumberg, and Peled, 2001; Holzmann, 2002; Merz, 2000;
Visser et al., 2003)) and testing (Broy et al., 2005b; Chow, 1978; Myers, Sandler,
and Badgett, 2011).

When the system we want to verify becomes larger, model checking it (as
well as the environment where it is immersed) becomes quickly intractable. In
these scenarios, a valid alternative is RV. The main di�erence with respect to
standard static veri�cation is the stage when it is applied, which is at execution
time. In fact, in RV we do not need to simulate all possible paths that the system
may generate during its execution, but we limit the analysis directly to the
paths exposed and generated by the system during its real execution. As a
consequence, RV could be more suitable and applicable than static veri�cation
in black-box scenarios, where there is no access to the source code of the
system we want to verify.

Since we generate a monitor starting from a formal speci�cation (Section
4.4), we represent statically what we will check dynamically. If the static
representation of the allowed event traces were error-free, we would be sure
that monitoring a system according to that representation, would allow us to
intercept all and only the possible violations due to unexpected or unwanted
sequences of events. Unfortunately, our static representation might contain
design and formalization errors too, making unproductive to monitor the
system behavior. If we were able to verify properties of the static representation
before using it for the dynamic monitoring, the runtime veri�cation would lead
to more controlled and meaningful results. In the case of trace expressions,
a possible way for obtaining this static check before the use at runtime is
verifying whether all the traces satisfy a LTL property (Pnueli, 1977). For
instance, a common useful property to be checked could be a ⇒ ♦b which
says that if a takes place sooner or later, b will take place as well. Considering
that the monitors used to verify the system are generated starting from a trace
expression1, we can conclude that all properties satis�ed by trace expressions
are either satis�ed by the monitored system, or their violation is recognized
by the monitor. This represents an important aspect because we can fuse static
and dynamic approaches obtaining the best of both: the formal veri�cation at
the static level and the runtime monitoring at the dynamic level.

For instance, the combination of static and runtime veri�cation can simplify
– reduce the size of – our monitors. If we were able to check statically a part of
our speci�cation, we could verify dynamically at runtime only what we are not
able to check at static time (Hinrichs, Sistla, and Zuck, 2014). Or also, if we want
to reduce the state space analyzed by a static veri�er, we can make assumptions
and relax the model that is being validated. But, in this way, we can not be

1To be more precise, in our implementation the monitors interpret the trace expression by
implementing the transition rules which de�ne the trace expression semantics.

160

12 Trace expressions model checking

sure the real system is compliant with our assumptions, and if it is not, it
would make the static veri�cation so obtained useless2. Combining the use of a
monitor to the static veri�er, we can simplify the model veri�ed statically, and
we can add a monitor at runtime in order to recognize assumption violations
with respect to our model (Chapter 13). These are just possible advantages in
combining static and runtime veri�cation. In this work, we focus on another
possible combination of static and runtime veri�cation, showing how we can
�rst verify statically our monitors, and then, how to use them to monitor
our systems. Our research question can be summarized in:

How can we trust our speci�cation before using it to monitor our system?

One possible way of achieving the static veri�cation of our speci�cation (thus,
our monitor) is translating it into a model more suitable for static veri�cation
purposes. In this work, we will show how to translate our speci�cations into
Büchi Automatons, that are the standard automata version of LTL formulas
used in model checking. We chose Büchi Automatons because they are a
standard representation supported by most of the existing model checker
(Vardi, 2007). In particular, we will use the SPIN model checker (Holzmann,
1991, 1997, 2004) to verify LTL formulas directly on our speci�cations.

Naturally, if we used LTL for generating our monitor, we would not need
to verify anything statically, because the monitor would already denote the
properties we want to check. But, LTL could be too limiting when used for RV
purposes, and we might need more expressive formalisms that allow de�ning
more complex monitors. As we have already presented in Section 4.5.1, the
formalism we chose to use for de�ning our monitors is more expressive than
LTL3. Thus, if we want to be sure that our “complex” monitor still satis�es a set
of LTL properties, we need a way to verify them on it. Finally, we can conclude
that, even though we have a complex speci�cation that is used to verify at
runtime complex properties on our system, we are still able to guarantee that
this speci�cation satis�es a given set of LTL properties (without being limited
to only those).

12.2 State of the art

In (Bodden, 2005), Bodden et al. de�ne a formalism which allows to build
expressive formulae over temporal traces in an intuitive way as well as a
complete implementation of that formalism, which instruments any given
Java application in bytecode form with appropriate runtime checks. That
approach is similar to ours, in fact, both pass through the automata theory to
generate monitors for �nite pre�xes. In (Bodden, 2005), the LTL over pointcuts
version of the formalism is transformed into monitors (Deterministic Büchi
Automata) that are rewritten as advice in in AspectJ4, as in Chapter 4 where the

2Our assumptions might be too strong and we need to relax them (see Chapter 13).
3Or better, it is more expressive than LTL when the latter is used for RV purposes, namely

LTL3.
4https://eclipse.org/aspectj/

161

https://eclipse.org/aspectj/

12 Trace expressions model checking

trace expression formalism is transformed into the corresponding automata
representing the LTL35 monitor.

Session types are used to verify object-oriented languages in (Gay et al.,
2010), where the authors extend their work on session types for distributed
object-oriented languages in three ways:

1. they attach a session type to a class de�nition, to specify the possible
sequences of method calls;

2. they allow a session type (protocol) implementation to be modularized,
i.e. partitioned into separately- callable methods;

3. they treat session-typed communication channels as objects, integrating
their session types with the session types of classes.

Several papers by Dezani-Ciancaglini, Yoshida et al. (Capecchi et al., 2009;
Dezani-Ciancaglini et al., 2005; Dezani-Ciancaglini et al., 2006; Dezani-
Ciancaglini et al., 2007; Hu, Yoshida, and Honda, 2008) have combined session
types, as speci�cations of protocols on communication channels, with the
object-oriented paradigm. A characteristic of all of these works is that a chan-
nel is always created and used within a single method call.

combining static and runtime verification In (Ahrendt, Pace,
and Schneider, 2016; Chimento et al., 2015), Schneider et al. present a tool
StaRVOOrs which combines static and runtime veri�cation of Java programs
using partial results extracted from static veri�cation to optimize the runtime
monitoring process. StaRVOOrs combines the deductive theorem prover KeY
(Ahrendt et al., 2016) and the runtime veri�cation tool LARVA (Colombo,
Pace, and Schneider, 2009), and uses properties written using the ppDATE
speci�cation language which combines the control-�ow property language
DATE used in the runtime veri�cation tool LARVA with Hoare triples assigned
to states. In (Gui et al., 2013), Lin Gui et al. propose to combine testing (in
particular, hypothesis testing) and model checking (in particular, probabil-
istic model checking) for non-deterministic systems. Their idea is to apply
hypothesis testing to system components which are deterministic and use
probabilistic model checking to lift the results through non-determinism. In
(Artho and Biere, 2005), Artho et al. show how to retain information from
static analysis for RV, or to compare the results of both techniques inside the
NJuke (Artho et al., 2004) framework for static and dynamic analysis of Java
programs. In this framework, a static analyzer looks for faults. Reports are then
analyzed by a human, who writes test cases for each kind of fault reported.
RV will then analyze the program possibly con�rming the fault as a failure or
counterexample.

5LTL3 is a a three-valued semantics (Bauer, Leucker, and Schallhart, 2009) for LTL formulas,
devised to adapt the standard semantics to RV, to correctly consider the limitation that at
runtime only �nite traces can be checked.

162

12 Trace expressions model checking

12.3 Motivations

As anticipated in Section 12.1, RV can be seen as a middle approach between
model checking and testing.

More in detail, the main di�erences between RV and model checking can
be summarized as follows (Leucker and Schallhart, 2009):

• time, model checking is applied statically on the system and not during
its execution;

• exhaustiveness, model checking generates all possible executions of the
system while RV checks only the executions generated by the system at
runtime (language inclusion problem vs word problem);

• invasiveness, model checking (generally) is applied to white-box scenarios,
when the source code of the system is available, while RV can be used
both in white-box and black-box scenarios, when the source code could
be unavailable;

• traces length, model checking can consider arbitrary positions of a in�nite
trace while RV considers �nite executions of increasing size.

In Section 12.1, we presented RV as a counterpart of testing. In particular,
RV is extremely close to a speci�c form of testing, which is sometimes termed
as oracle-based testing. In (Leucker and Schallhart, 2009) the authors compare
RV with oracle-based testing. In the following, we propose a revised version
of the main di�erences between RV and oracle-based testing (Leucker and
Schallhart, 2009):

• time, testing is applied during the development of the system while RV is
applied before and after the deployment6;

• granularity, testing can test only the output of the system while RV can go
into the details of the system behavior checking not only the observable
outputs but also how these outputs have been generated (for instance,
RV can tackle the nondeterminism, so even if the observable events are
correct, they could have been generated in a nondeterministic way).

• formalization, in testing, an oracle is typically de�ned directly, rather
than generated from some high-level speci�cation as happen in RV.

After having compared RV with model checking and test, we are ready
to answer at the question: When RV should be used? (Leucker and Schallhart,
2009):

• when the complexity of the system makes it intractable for an exhaustive
analysis;

6RV applied before the deployment is used to check if the system respects our model. RV
applied after the deployment is used to monitor the system behavior in order to prevent
malfunctions (or at least signalling the user in time to reduce the damage).

163

12 Trace expressions model checking

• when some information is available only at runtime;

• when a precise description of the environment does not exist;

• when there are security issues in the case of safety-critical systems, where
it is useful to monitor properties that have been statically proved or tested,
mainly to have a double check.

Now that the main di�erences among RV, model checking and testing have
been presented, we can focus on the motivations of the work.

Supposing we have a system to check, in order to do the RV of it we have
to start writing the speci�cation we want to verify. In the next section we
will present a possible formalism that can be used to obtain this, but for now,
we focus only on the problem. Once we have de�ned our speci�cation, we
can use it to generate a monitor to check the system behavior. If the system
does something inconsistent with our speci�cation, the monitor will notice it
and will act accordingly (implementation dependant). But, what happen if our
speci�cation does not represent our intentions? And, our speci�cation allows
us to assert something more about the system? If we were able to check our
speci�cation statically, we could resolve the �rst problem. Consequently, we
could also say something more about the system veri�ed.

Since RV does not need to exhaustively check the system behavior, we can
de�ne more complex properties to verify (intractable properties in static veri-
�cation). This greater complexity can lead to mistakes also in the development
of our speci�cation compromising the entire RV process. One possible way to
solve this problem is by checking directly the speci�cation statically before
using it. With such preprocessing we achieve two main advantages:

• trust, the RV process is more reliable since we are sure that our complex
property satis�es a set of constraints (veri�able statically);

• propagation, as long as the system is consistent with the monitor gener-
ated by the speci�cation, it is also consistent with the constraints checked
statically (by construction).

12.4 Model Checking Trace expressions

In this section, we present the model checking process used to check if a LTL
property is satis�ed by a trace expression.

Given a trace expression τ , we want to verify if a LTL property φ is satis�ed
by all the traces recognized by τ . To achieve this, we can follow this 3-steps
algorithm:

1. Rewrite τ obtaining its abstraction τ ′ (over-approximation). Following
the de�nition of nτo (De�nition 4.2.3), given as the set of traces denoted
by the trace expression τ , we have that nτ ′o ⊇ nτo.

2. Translate τ ′ in the equivalent Büchi Automaton Bτ ′ .

164

12 Trace expressions model checking

3. Compute the product of Bτ ′ and B¬φ . If the product accepts some traces,
τ does not satisfy φ and a trace representing the counterexample is
raised.

12.4.1 1st step: Rewriting

The �rst step is the most important one, in fact, it consists in translating a given
trace expression to a trace expression representing its over-approximation. This
phase is necessary because, in general, it is not always possible to translate a
trace expression into an equivalent Büchi Automaton; this is due to express-
iveness di�erences. We assume the reader to be familiar with the theory of
formal languages and of ω-regular languages, see for example (Hopcroft and
Ullman, 1969; Staiger, 1997; Thomas, 1990). A Büchi Automaton recognizes
ω-regular languages while trace expressions can represent more expressive
languages (Chapter 4 for more details) that can be also ω-context-free and ω-
context-sensitive. Consequently, we have to manage all trace expressions which
are too expressive (through abstraction). As we introduced in Section 4.2.5,
the expressivity of trace expressions is due to the presence of expansive sub
terms. In particular, we remind the two kinds of expansive trace expressions
we may encounter: the expansive concatenations and the expansive shu�es
(De�nition 5).

Below we report the pseudocode of a recursive implementation of the re-
write function (Algorithm 1). This algorithm takes three arguments, that are:
the trace expression we want to over-approximate, a map of dangerous trace
expressions (dangerous), a set of already seen trace expressions (safe ∪ dan-
gerous), and it returns the over-approximation of the trace expression.

The most interesting part of the algorithm concerns the expansive terms
recognition. As we have already seen before, an expansive term is a term
containing or a concatenation (τ1 · τ2) having a cycle in the head, or a shu�e
(τ1 | τ2) containing a cycle in its left or right branch (expansive concatena-
tions/shu�es). In order to recognize them, we have to remember the trace
expressions we have already visited during the exploration of the trace expres-
sion’s subtrees di�erentiating between safe and dangerous cycles. To achieve
this, we maintain in memory the history of all visited states {safe ∪ dangerous}
and the history of the dangerous states. In this way, we can detect if a cycle is
expansive, or not, simply searching inside the dangerous map, which must be
updated each time we �nd a new concatenation (or shu�e) operator.

More precisely, the dangerous map can be represented as a set of tuples
(TExp, Danger) that the algorithm uses to keep track of possibly expansive
cycles; where, Danger ∈ {maybe, true}, meaning that, if (t, true) ∈ dangerous, t
is an expansive term and we have to rewrite it, while, if (t, maybe) ∈ dangerous,
we have already seen t in the analysis of TExp and it could be an expansive
term because it contains a concatenation or a shu�e subtree. Concluding, if
both (t, true) and (t, maybe) < dangerous, it means that t is not considered, for
now, a dangerous term, because we do not have encounter any concatenation
or shu�e subtree inside it.

165

12 Trace expressions model checking

Before going into the details of the algorithm implementation, it could be
useful showing what we obtain when we apply it to a simpli�ed version of
the stack example (Section 4.3.1.1).

Example 5. Considering a stack object, we de�ne the set of correct traces, hav-
ing only the methods push and pop.

nϑpusho = {o.push} nϑpopo = {o.pop}

τ = τpush · τpop
τpush = ϑpush : (τ ∨ ϵ)
τpop = ϑpop : ϵ

rewrite(τ , {}, {}) → τ ′

τ ′ = τ ′push · τ
′
pop

τ ′push = (ϑpush : ϵ) · (τ
′
push ∨ ϵ)

τ ′pop = (ϑpop : ϵ) · (τ ′pop ∨ ϵ)

Before going on with the presentation of the rewrite algorithm’s pseudocode,
we can spend some words on this example. Starting from the trace expression
τ , we want to obtain a trace expression τ ′, such that nτo ⊆ nτ ′o (τ ′ is an
over-approximation of τ). We can easily note that simply deriving the two
languages de�ned by τ and τ ′

nτo = {o.pushno.popn |n ∈ N+} ∪ {o.pushω }
nτ ′o = {o.pushno.popm |n ∈ N+,m ∈ N}∪{o.pushω }∪{o.pushno.popω |n ∈ N+}
and, since {o.pushno.popn |n ∈ N+} ⊆ {o.pushno.popm |n ∈ N+,m ∈ N}, we
conclude that nτo ⊆ nτ ′o. Intuitively, we have just passed from a context-
free language to a regular language. With τ we de�ned that a trace of events
containing o.push and o.pop was a correct trace i� the number of o.push was
equal to the number of o.pop (with also the possibility of having an in�nite
number ofo.push7). With τ ′we want to reduce instead the expressivity relaxing
our constraints. In this speci�c case, since we are counting and constraining
the number of events (making the recognized language at least context-free),
when we relax the constraints reducing the expressivity we can simply stop
counting the events. Practically speaking, we can just stop forcing o.push and
o.pop to have the same cardinality. Removing this constraint it is easy to note
that the language we are recognizing now is not context-free anymore, but
it is regular. We will show in the the rest of the chapter that these kinds of
over-approximations allow us to have a more suitable representation of our
speci�cations, in particular, when we are interested in verifying them statically.

In Algorithm 1 we reported the pseudocode of the rewrite function. In the
following we describe step by step all the cases handled by the algorithm.

7Until we see the �rst o.pop a monitor can not say if the trace is good o not and consequently
we accept also the in�nite trace of o.push.

166

12 Trace expressions model checking

Algorithm 1 Rewrite function’s pseudocode
function TExp rewrite(texp, dangerous, already_seen){

1: if texp = ϵ then
2: return ϵ

3: else if (texp, _) ∈ dangerous then
4: remove (texp, maybe) from dangerous
5: {texp already visited, we are in a dangerous term} add (texp, true) to dangerous
6: return ϵ

7: else if texp ∈ already_seen then
8: return rewritten(texp, already_seen) {texp visited, we are not in dangerous term}
9: else if texp matches head · tail then

10: {update the set of texps already visited} already_seen1 = (already_seen ∪ {texp})
11: {example: {(s1, true), (s2, maybe)} ∪ {s1, s2, s3} =

{(s1, true), (s2, maybe), (s3, maybe)}} dangerous_head = dangerous ∪ already_seen1
12: {rewrite the head subterm} new_head = rewrite(head, dangerous_head, already_seen1)
13: if {t | t ∈ already_seen1 and (t, true) ∈ dangerous_head} , Ø then
14: {the concatenation is expansive, thus rewrite the tail subterm} dangerous_tail =

dangerous ∪ already_seen1
15: new_tail = rewrite(tail, dangerous_tail, already_seen1)
16: {create new head and new tail} T1 = new_head · (T1 ∨ ϵ)
17: T2 = new_tail · (T2 ∨ ϵ)
18: return T1 · T2
19: else
20: remove already_seen1 from dangerous
21: new_tail = rewrite(tail, dangerous, already_seen1)
22: return new_head · new_tail {there are no cycles}
23: else if texp matches left | right then
24: already_seen1 = (already_seen ∪ {texp})
25: dangerous_left = (dangerous ∪ already_seen1)
26: dangerous_right = (dangerous ∪ already_seen1)
27: {dangerous variables refer to di�erent objects} new_left = rewrite(left, dangerous_left,

already_seen1)
28: new_right = rewrite(right, dangerous_right, already_seen1)
29: dangerous = dangerous_left ∪ dangerous_right
30: t = {t’ | t ′ ∈ already_seen1 and (t’, true) ∈ dangerous}
31: if t , Ø then
32: T1 = new_left · T1
33: T2 = new_right · T2
34: return T1 | T2
35: else
36: return new_left | new_right
37: else if texp matches left ∨ right then
38: {(the same for ∧)} already_seen1 = copy(already_seen ∪ {texp})
39: new_left = rewrite(left, dangerous, already_seen1)
40: new_right = rewrite(right, dangerous, already_seen1)
41: return new_left ∨ new_right {(the same for ∧)}
42: else if texp matches pre�x : body then
43: {(the same for�)} already_seen1 = copy(already_seen ∪ {texp})
44: new_body = rewrite(body, dangerous, already_seen1)
45: return pre�x : new_body {(the same for�)}

}

167

12 Trace expressions model checking

The �rst case (line 1) tackled is when the trace expression texp is the empty
trace ϵ . This is the simplest case because we do not have to rewrite anything
and we just return the empty trace ϵ .

The second case (line 3) handles the presence of dangerous cycles. If texp
belongs already to the dangerous set8, it means that texp is a cyclic term (since
it is in dangerous we have already seen it), and it is a subtree of the head of a
concatenation term or of a shu�e term. Consequently, texp is an expansive
term and we have to update the dangerous set (now we know it is true). After
that, we return ϵ (why ϵ will be clear in the fourth and �fth cases).

The third case (line 7) considers the safe cycles. We are not inside the head
of a concatenation nor a shu�e, otherwise texp would have been inside the
dangerous set (second case). Consequently, if texp belongs to the set of the
already_seen trace expressions, it means that we have found a cycle that is not
dangerous. We can not return directly texp, because texp is the old version that
can be expansive. Instead, we want to return the new rewritten version of texp.
In all the cases of the algorithm, each time we update the set of already_seen
trace expressions, we also implicitly add the rewritten version of the trace
expression9. In this way, when we encounter a safe cycle we can just return
the term that will contain the non-expansive rewritten version of texp. We can
achieve this using a function called rewritten that, given a trace expression
and a set of already_seen trace expressions, returns the rewritten version.

The fourth case (line 9) is one of the complex cases. Here we handle the
concatenation terms. The �rst thing we have to do is to update the set of
already_seen trace expressions adding texp (the current one). After that, di�er-
ently from the other simple cases, we have to update also the dangerous set,
merging it with the set of already_seen states. Since now we are approaching to
analyze the head of the concatenation, all the terms we have already encounter
can cause an expansion of our term, because texp is a subtree of each one of
them. First of all, we need to analyze the head of the concatenation, if we �nd
a cycle, we handle it as a bad one (second case) and not as a good one (�rst
case). This is totally derived from the de�nition of expansive concatenation
(De�nition 5). If we �nd a dangerous cycle inside the head (the if statement
at line 13), we have to rewrite �rst the tail, and after that, we can construct
the new trace expression corresponding to the over-approximation of our ex-
pansive concatenation. We can obtain that concatenating the new head with
the new tail (line 18). Naturally, we have also the good scenario where our
concatenation is not expansive, and this can be derived from the absence of
dangerous cycles inside the head of the concatenation. In this scenario, we do
not change the structure of the concatenation and we limit to concatenate the
rewritten head with the rewritten tail. Even though the concatenation is not
expansive, there might be expansive terms inside the head or the tail that have
been rewritten from the rewrite function (expansive terms not in�uencing our

8We do not care if it is maybe or true, because now force it to be true.
9Even though it is not ready, we can add a reference to the term that will be uni�ed with it

(in SWI-Prolog, on which the algorithm is actually implemented, we can easily obtain this
using free variables).

168

12 Trace expressions model checking

concatenation because we have checked it at line 13). Before going on with
the �fth case, it is time to motivate why at the second step we returned ϵ . In
order to understand this, it is enough to see what we do with the rewritten
head returned by the function and saved into the variable new_head. We create
a new term (line 16) concatenating new_head with itself. If we think about
the original head of the concatenation, where now we have an ϵ , before we
had a cycle that made the concatenation expansive. This cycle allowed the
concatenation to accumulate a new tail and restart consuming a new head
(and so on). If we remove this cycle, we have to simulate the same behavior
without the accumulation of the tail. To do so, we can substitute the cycle with
a ϵ and combine the new head so generated with itself. In this way we obtain
a cycle on the content of the head, as we were doing before but without the
accumulation of the tail. To simulate this accumulation we can just do the same
thing for the tail, we concatenate the new_tail with itself and we conclude
concatenating the two terms so generated (line 18). In this way, before we
could consume n time the head concatenating with the expansion of the term
n times the tail, now, we simply consume a certain number of times n the head
without accumulating and, after that, we consume a certain number of times
m the tail (where n andm might be di�erent).

The �fth case (line 23) is the other complex case and it is very similar to
the fourth one. Here we handle the shu�e terms. Also in this case, we �rst
update the set of already_seen terms and then we update the dangerous set
considering all the super terms of the shu�e (the terms that have texp as
subtree). After that, we check if we have found a bad cycle inside the left or the
right operand, and if so, we rewrite the shu�e using the two new rewritten
versions obtained from the two function calls. As it was for the concatenation
term, also here we might have found a good shu�e term; consequently, we
just construct the new trace expression combining the two rewritten operand
terms (left and right) with the shu�e operator. This is totally derived from the
de�nition of expansive shu�e (De�nition 5).

In both the fourth and �fth cases, we expect that, if the subtrees of texp are
not dangerous and do not contain any other expansive terms, texp is rewritten
into itself.

The sixth case (line 37) handles the union terms (equivalently also the
intersection terms). If texp is an union term, we simply apply the rewrite
function to its operands and we combine the results so obtained using the
union operator. Since the union operator does not introduce expansivity per se,
we do not have to update the dangerous set (only concatenations and shu�es
introduce expansivity, De�nition 5).

The seventh case (line 42) handles the pre�x terms (equivalently also the
�lter terms). If texp is a �lter term, we simply apply the rewrite function to
the remaining of the trace expression. The result will be combined again with
the pre�x operator, and then returned.

Removing the expansive subtrees (subterms) from the trace expression, we
obtain a spurious solution, namely a solution representing a bigger set of

169

12 Trace expressions model checking

traces; this is entirely due to the fact that only using expansive terms, as cyclic
concatenations and shu�es, trace expressions are able to recognize languages
more expressive than regular. But, having a less expressive trace expression
(the over-approximation) we can translate it to an equivalent Büchi Automaton
(second step of the algorithm).

Before going on with the presentation of the second step that presents how
to translate the rewritten trace expression to its equivalent Büchi Automaton,
we have to spend more words on the correctness of the rewrite algorithm. In
particular, we have to show that the trace expression returned by it is actually
an over-approximation. In order to show this, we have to think about what we
are trying to do with the rewrite function, that is to remove all the expansive
subtrees from the trace expression. Consequently, we can show the correctness
of our approach through two steps:

1. First of all, we have to show that given a trace expression τ , the re-
write algorithm removes all expansive subtrees from it returning the
corresponding trace expression τ ′, after that,

2. we have to show that such trace expression τ ′ is an over-approximation
of τ , meaning that nτo ⊆ nτ ′o.

In order to prove the rewrite algorithm removes all the expansive subtrees
we have to recall brie�y which kind of expansive subtrees we can have, that
are expansive concatenations and expansive shu�es (De�nition 5). But, what
actually makes a concatenation expansive? As we have already seen previously,
a concatenation is expansive if the entire concatenation is a subtree of its head.
For instance, τ = (ϑpush:(τ∨ϵ))·(ϑpop:ϵ) is an expansive concatenation because
τ is inside the head. In the same way, we can recall when a shu�e is expansive,
namely when the entire shu�e is inside the left or the right operand. For
instance, τ = (ϑpush:τ)|(ϑpop:ϵ) is an expansive shu�e because τ is inside the
left operand (left subtree of the shu�e).

Now we show that, starting from an expansive concatenation, the rewrite
algorithm removes all the expansive subtrees (the reasoning about the shu�e is
almost the same). Recalling the algorithm’s pseudocode presented in Algorithm
1, when τ is a concatenation we fall in the fourth case (line 9). The �rst thing
that the algorithm does is updating the set of already_seen terms, since now we
are analyzing τ , we will add τ to it. After that, since we are in a concatenation,
we also update the dangerous set adding τ with value maybe (we do not
know if it is really dangerous or not yet). Now we can call recursively the
rewrite function on the head of the concatenation, passing the new updated
sets. If the concatenation is expansive, that means we will encounter it again
during the evaluation of the head. Since before going into the head we updated
the dangerous set, if we encounter the concatenation during the evaluation
of the head, we fall into the second step (line 3), because τ belongs to the
dangerous set (with valuemaybe). At this point we know that we are analyzing
an expansive subtree for sure. Thus, we can stop analysing it and we can
just return back ϵ . The new head is obtained simply concatenating the head

170

12 Trace expressions model checking

returned by the recursive call of the rewrite function, with itself (line 16). The
new tail is also obtained in the same way (line 17). Consequently, the new
concatenation is just the concatenation of the new head with the new tail (line
18). As already anticipated when we commented the pseudocode presented in
Algorithm 1, combining the new head with the new tail we are simulating the
previous behavior without counting the events. The rest of the term structure
is unchanged. Considering again the example sketched before, we do not count
o.push and o.pop anymore, but we preserve their order. For instance, it will
never happen that o.push is observed after o.pop (and so on).

For the expansive shu�e terms is almost the same. We update the dangerous
set, we evaluate the left and right operands and once the rewritten versions
are returned, we simply concatenate the left operand with itself (the same for
the right operand) and we construct the result as the shu�e of the two terms
so constructed.

Now that we have shown informally that given a trace expression τ the
rewrite function remove the expansive cycles returning the rewritten version
τ ′; we have to show that τ ′ is an over-approximation of τ .

If τ is an expansive trace expression, it means that contains expansive
concatenations or expansive shu�es inside. When the rewrite function �nds
an expansive concatenation, it rewrites it simulating its behavior without the
accumulation of the tail. As we have shown before, we obtain in this way
a new non-expansive concatenation where the number of events generated
consuming the head is independent from the number of events generated
consuming the tail. But if it is so, it means that the new concatenation generates
a bigger set of events, namely nτo ⊆ nτ ′o. Thus, we can conclude that τ ′ is an
over-approximation of τ (a similar reasoning can be done also for expansive
shu�e terms).

Now that we have �nished to present the �rst step of the algorithm and we
have obtained the over-approximation of the trace expression, we can show how
we can translate such trace expression into an equivalent Büchi Automaton.

12.4.2 2nd step: Translation

The second step consists in the translation of the trace expression, which was
previously rewritten, in an equivalent Büchi Automaton recognizing the same
language (set of traces).

Since this trace expression does not contain expansive terms (we removed
them in the �rst step), we can translate it directly simulating the δ transition
relation.

Given a non-expansive trace expression τ :

1. create a Büchi Automaton Bτ with an initial state T0 associated to τ .

2. create a queue of couples Q containing the couple (τ , T0).

3. extract the �rst couple (τi , Ti) from Q, knowing that the set of events
which belong to an event types is �nite, for each event e s.t τi

e
→ τ ′i :

171

12 Trace expressions model checking

• if τ ′i = ϵ , considering ψ a special event which does not belong to
our set of possible events, we create a new state Tψ and we add

Ti
ψ
→Tψ , Tψ

ψ
→Tψ and we make Ti �nal (if Tψ already exists, we

add only the edge from Ti to it).

• otherwise if τ ′i has already been seen before, we retrieve the corres-
ponding automaton’s state Tr and we add Ti

e
→Tr and we make

Tr �nal.

• otherwise, we create a new state T’i associated to τ ′i and we add
Ti

e
→T′i .

4. if Q is not empty, we restart from the point 3.

At the end of this process we obtain the Büchi Automaton Bτ equivalent to
τ (see Theorem 7).

The ψ special event is used to make acceptable by the Büchi Automaton
also the �nite traces. In this way, if τ recognizes the �nite trace σ = abcd , the
corresponding Büchi Automaton will recognize the trace u = abcd ψω . It is
important that the ψ event must not belong to the set of handled events in
order to avoid False Negative results, where theψ could make a LTL property
erroneously satis�ed by u.

Example 6. Considering the same τ ′ obtained at the end of Example 5, we create
the following Büchi Automaton Bτ ′ :

T0start

T1T3 T2

o
.pusho.push

o.pop

o.push

o.pop

Figure 12 .1 . Büchi Automaton Bτ ′

In Example 6, the trace expression τ ′ and the corresponding Büchi Auto-
maton represent a superset of the traces recognized by the initial trace ex-
pression τ . In particular, we lose the ability to bind the number of o.push with
the number of o.pop events. In fact, we can only represent traces where we
have a number npush of o.push before a number npop of o.pop, with npush , npop
possibly. Thus, we have conserved only the causality between o.push and
o.pop.

Lemma 3. Given a trace expression τ , if τ is non-expansive then the set of trace
expressions that can be obtained starting from τ in an arbitrary number of steps
is �nite.

172

12 Trace expressions model checking

Proof. If τ is non-expansive we do not fall back in the cases like that showed
in Example 1 and Example 2 where we have a trace expression generating an
in�nite set of new states (through term expansion). Removing all the expansive
concatenations and shu�es, we have trace expressions that in an arbitrary
number of steps become ϵ (we can terminate because we have no more steps
to do) or become a trace expression already seen (we can terminate because
we have already visited this trace expression). This is easy to note considering
the operational semantics of trace expressions (see Figure 4.1). �

Theorem 7. Let τ be a non-expansive trace expression, the Büchi Automaton Bτ
obtained simulating the δ transition relation is equivalent to τ and it is always
computable (Lemma 3), thus

∀u in�nite trace.u ∈ nτ ′o ⇐⇒ Bτ ′ accepts u
∀σ �nite trace.σ ∈ nτ ′o ⇐⇒ Bτ ′ accepts σ ·ψω .

Proof. It follows directly from the Büchi Automaton Bτ ′ construction. �

12.4.3 3rd step: Product

The last step consists in the real model checking phase.
In the previous steps, starting from a trace expression τ representing our

model we generated its over-approximation τ ′ to have a model expressive as
a Büchi Automaton (1st step), after that we translated τ ′ to its corresponding
Büchi Automaton representation Bτ ′ (2nd step). The only step left to complete
is check if a LTL property φ is satis�ed by the model Bτ ′ , or not.

As we presented in Section 3.6.3, we can follow an Automata-Based Model
Checking approach computing the product Bτ ′×¬φ between Bτ ′ and B¬φ . Once
Bτ ′×¬φ is created, we can test its emptiness, and if it is not we have found a
counterexample and we can conclude that τ ′ does not satisfy φ.

To �ll the gap we have to remind that τ and τ ′ are related.

Observation 1. nτo ⊆ nτ ′o, τ ′ over-approximation of τ .

Since τ ′ is an over-approximation of τ and Bτ ′ is its automata representation,
if we do not �nd any traces (counterexample) which belongs to Bτ ′×¬φ , we
can deduce:

(from Theorem 7)
�u ∈Bτ ′ .u satis�es ¬φ ⇐⇒ �u ∈nτ ′o.u satis�es ¬φ

(from Observation 1)
�u ∈nτ ′o.u satis�es ¬φ =⇒ �u ∈nτ o.u satis�es ¬φ

In this way, we can conclude that, if the over-approximation τ ′ satis�es φ
(no counterexample has been found) then also τ satis�es φ. From Observation
1 we can deduce the implication for only one direction (=⇒) because, since
we are over-approximating our model, there could exist a counterexample
trace u which does not satisfy φ s.t u ∈ nτ ′o but u < nτo (False Positive).

173

12 Trace expressions model checking

One of the main advantages of following a standardized approach as the
Automata-Based Model Checking is that, once we have obtained the Büchi
Automaton Bτ ′×¬φ , we can represent it directly using an existent and well-
know programming language as PROMELA inside the popular open-source
software veri�cation tool SPIN10 (Holzmann, 1991, 1997, 2004).

12.5 Implementation and Experiments

In the following we continue to use the stack example used in the rest of the
chapter. We show an experiment of use of our SWI-Prolog implementation
of the 3-steps algorithm presented in Section 12.4. The code implementing
the translation can be downloaded from http://trace2buchi.altervista.

org.
Inside the SWI-Prolog environment, starting from the trace expression T

representing our very simple stack, we �rst rewrite T into the correspond-
ing non-expansive abstraction Tr (1st Step) using the corresponding rewrite

predicate, then we translate Tr into the equivalent Büchi Automaton Buchi

(2nd Step) using the corresponding translate predicate, �nally we create
a promela �le stack.pml containing the Buchi representation and the LTL
property that we want to check (for instance, eventually pop (<>(pop))).

1?− T = ((push : (T \ / ep s i l on)) * (pop : ep s i l on)) ,
2r ew r i t e (T , Tr) , t r a n s l a t e (Tr , Buchi) ,
3wr i t e _p r ome l a _ f i l e (s tack , Buchi , ‘ (< > (pop)) ’) .

The previous SWI-Prolog implementation corresponds to the �rst two steps
of our 3-steps algorithm (Section 12.4.1 and 12.4.2). This execution brings to
the creation of the stack.pml �le.

In the following we report the stack.pml content so obtained.

1bool ep s i l on = 0 ;
2bool pop = 0 ;
3bool push = 0 ;
4
5active proctype s tack () {
6S 0 _ i n i t :
7i f
8: : skip −> d_step { push = 1 ; ep s i l on =0 ; pop=0 } goto accept_S1
9f i
10accept_S1 :
11i f
12: : skip −> d_step { push = 1 ; ep s i l on =0 ; pop=0 } goto S2
13f i
14S2 :
15i f
16: : skip −> d_step { pop = 1 ; ep s i l on =0 ; push=0 } goto accept_S3
17: : skip −> d_step { push = 1 ; ep s i l on =0 ; pop=0 } goto accept_S1
18f i
19accept_S3 :
20i f
21: : skip −> d_step { ep s i l on = 1 ; pop =0 ; push=0 } goto accept_Seps

10http://spinroot.com/spin/

174

http://trace2buchi.altervista.org
http://trace2buchi.altervista.org
http://spinroot.com/spin/

12 Trace expressions model checking

22: : skip −> d_step { pop = 1 ; ep s i l on =0 ; push=0 } goto accept_S3
23f i
24accept_Seps :
25i f
26: : skip −> d_step { ep s i l on = 1 ; pop =0 ; push=0 } goto accept_Seps
27f i
28}
29l t l { (< > (pop)) }

This �le is the promela code corresponding to the Büchi Automaton presen-
ted in Figure 6.

The states in promela correspond to the Büchi Automaton states; for in-
stance, S0_init corresponds to T0 in Figure 6 (and similarly for all the other
states involved). Also the Büchi Automaton transitions are translated into the
promela code, in particular using the d_step construct. For instance, theo.push
transition fromT0 toT1 is translated into d_step{push=1;epsilon=0;pop=0}
from S0_init to accept_S1. In Figure 6, T1 was an accepting state and so it
is in promela. The accept_* pattern is the one used in promela to represent
accepting states.

Finally, having the Büchi Automaton representation of the trace expression
resulting from the 2nd Step, we can do the product between Buchi and the
LTL property (Section 12.4.3) directly inside the SPIN model checker (3rd Step).

First of all, using the stack.pml �le, we generate a veri�er (model checker)
for the speci�cation.

In the shell we write:
1−$ sp in −a s tack . pml

The output generated is a C �le, named pan.c, that can be compiled to produce
an executable veri�er.

In the shell we compile the pan.c �le obtaining the executable correspond-
ing to our veri�er.

1−$ gcc pan . c −o s t a c k _ v e r i f i e r

Then, we can run the veri�er. Since the LTL property that we want to check
is a liveness property, we have to add the -a �ag in order to �nd acceptance
cycles (violations are in�nite executions).

1−$. / s t a c k _ v e r i f i e r −a
2pan : 1 : acceptance c y c l e (a t depth 4)
3. . .
4State−vec to r 28 byte , depth reached 12 , e r r o r s : 1
58 s ta t e s , s to red (1 0 v i s i t e d)
60 s ta t e s , matched
710 t r a n s i t i o n s (= v i s i t e d +matched)
80 atomic s teps
9. . .

As we can see, the veri�er �nds an acceptance cycle (that is a violation of
the LTL property). Using the -r �ag we can read and execute the trail �le
(generated in the previous step) containing the counterexample trace.

1−$. / s t a c k _ v e r i f i e r −r
2MSC : ~G 4

175

12 Trace expressions model checking

31 : proc 0 (l t l _ 0) s t ack . pml : 4 (s t a t e 3) [(! ((pop)))]
42 : proc 1 (s t ack) s tack . pml : 8 (s t a t e 7) [(1)]
53 : proc 0 (l t l _ 0) s t ack . pml : 4 (s t a t e 3) [(! ((pop)))]
64 : proc 1 (s t ack) s tack . pml : 8 (s t a t e 5) [D_STEP8]
7<<<<<START OF CYCLE >>>>>
85 : proc 0 (l t l _ 0) s t ack . pml : 4 (s t a t e 3) [(! ((pop)))]
96 : proc 1 (s t ack) s tack . pml : 1 2 (s t a t e 1 5) [(1)]
107 : proc 0 (l t l _ 0) s t ack . pml : 4 (s t a t e 3) [(! ((pop)))]
118 : proc 1 (s t ack) s tack . pml : 1 2 (s t a t e 1 3) [D_STEP12]
129 : proc 0 (l t l _ 0) s t ack . pml : 4 (s t a t e 3) [(! ((pop)))]
131 0 : proc 1 (s t ack) s tack . pml : 1 6 (s t a t e 29) [(1)]
141 1 : proc 0 (l t l _ 0) s t ack . pml : 4 (s t a t e 3) [(! ((pop)))]
151 2 : proc 1 (s t ack) s tack . pml : 1 7 (s t a t e 27) [D_STEP17]
16sp in : t r a i l ends a f t e r 12 s teps
17# processes 2 :
181 2 : proc 0 (l t l _ 0) s t ack . pml : 4 (s t a t e 3) (i n v a l i d end s t a t e)
19(! ((pop)))
201 2 : proc 1 (s t ack) s tack . pml : 1 2 (s t a t e 1 5) (i n v a l i d end s t a t e)
21(1)
22g l oba l va r s :
23b i t pop : 0
24l o c a l va r s proc 1 (s t ack) :

This cycle corresponds to the in�nite trace containing only the push event.
Consequently, it is not true that our speci�cation recognizes only traces where
<>(pop) is satis�ed. In fact, o.pushω ∈ nτo (that is exactly the trace causing
the generation of the trail �le reported above).

We can check another LTL property. This time a safety property, for instance,
globally push ([](push)). As before, we execute the predicates correspond-
ing to the two �rst steps of the algorithm directly inside SWI-Prolog (passing
the new LTL property as argument). After that we can compile the new pan.c

�le generated with the -DSAFETY �ag. Since the LTL formula is a safety prop-
erty we need to search for assertion violations (violations are �nite executions).

Finally we can run the model checker obtaining the following result.
1−$. / s t a c k _ v e r i f i e r
2pan : 1 : a s s e r t i o n v i o l a t e d ! (! ((push))) (a t depth 1 2)
3. . .
4State−vec to r 20 byte , depth reached 12 , e r r o r s : 1
57 s t a t e s , s to red
60 s ta t e s , matched
77 t r a n s i t i o n s (= s to red +matched)
80 atomic s teps
9. . .

Also here, we �nd a counterexample that violates our LTL property. This
time, since we are verifying a safety property, we search for a state violating
an assertion.

As we did for the previous experiment, also here we can see the trail �le
generated by the model checker.

1−$. / s t a c k _ v e r i f i e r −r
2MSC : ~G 3
31 : proc 0 (l t l _ 0) s t ack . pml : 3 (s t a t e 6) [(1)]
42 : proc 1 (s t ack) s tack . pml : 8 (s t a t e 7) [(1)]
53 : proc 0 (l t l _ 0) s t ack . pml : 3 (s t a t e 6) [(1)]

176

12 Trace expressions model checking

64 : proc 1 (s t ack) s tack . pml : 8 (s t a t e 5) [D_STEP8]
75 : proc 0 (l t l _ 0) s t ack . pml : 3 (s t a t e 6) [(1)]
86 : proc 1 (s t ack) s tack . pml : 1 2 (s t a t e 1 5) [(1)]
97 : proc 0 (l t l _ 0) s t ack . pml : 3 (s t a t e 6) [(1)]
108 : proc 1 (s t ack) s tack . pml : 1 2 (s t a t e 1 3) [D_STEP12]
119 : proc 0 (l t l _ 0) s t ack . pml : 3 (s t a t e 6) [(1)]
121 0 : proc 1 (s t ack) s tack . pml : 1 6 (s t a t e 29) [(1)]
131 1 : proc 0 (l t l _ 0) s t ack . pml : 3 (s t a t e 6) [(1)]
141 2 : proc 1 (s t ack) s tack . pml : 1 6 (s t a t e 2 1) [D_STEP16]
15pan : 1 : a s s e r t i o n v i o l a t e d ! (! ((push))) (a t depth 1 3)
16sp in : t r a i l ends a f t e r 13 s teps
17# processes 2 :
181 3 : proc 0 (l t l _ 0) s t ack . pml : 3 (s t a t e 6) (i n v a l i d end s t a t e)
19(! ((push)))
20(1)
211 3 : proc 1 (s t ack) s tack . pml : 2 1 (s t a t e 43) (i n v a l i d end s t a t e)
22(1)
23(1)
24g l oba l va r s :
25b i t push : 0
26l o c a l va r s proc 1 (s t ack) :

Di�erently from the previous experiment, we do not search for cycles, be-
cause we are verifying a safety property, but we search for assertion violations.
As we can see in the trail �le generated, we �nd a violation after 13 steps,
when our property is violated since push is not satis�ed anymore (for instance,
{o.push o.push o.pop o.pop} ∈ nτo and {o.push o.push o.pop o.pop} does not
satisfy [](push)).

12.6 Discussion

In this chapter, we showed how to use a standard static approach to verify a
rich formalism used to generate monitors for runtime veri�cation of object-
oriented programs. By verifying LTL properties statically we obtain two main
advantages: (1) we can check if the speci�cation of our monitor is coherent with
our intentions, and (2) the system monitored by the veri�ed monitor satis�es
the same LTL properties, as long as it is consistent with the speci�cation.

The �rst two steps of the algorithm presented in Section 12.4 are imple-
mented in SWI-Prolog, while the last step (the Büchi Automaton product) is
implemented using the SPIN model checker. The Büchi Automaton Bτ gen-
erated in the second step and the LTL property φ we want to verify are both
compiled to PROMELA language.

177

13 Recognising Assumption Violations in
Autonomous Systems Veri�cation

“Your assumptions are your windows on the world.
Scrub them o� every once in a while,

or the light won’t come in.”
- Isaac Asimov

When applying formal veri�cation to a system that interacts with
the real world we must use a model of the environment. This model
represents an abstraction of the actual environment, but is necessar-
ily incomplete and hence presents an issue for system veri�cation.
If the actual environment matches the model, then the veri�cation
is correct; however, if the environment falls outside the abstraction
captured by the model, then we cannot guarantee that the system
is well-behaved. A solution to this problem consists in exploiting
the model of the environment for statically verifying the system’s
behaviour and, if the veri�cation succeeds, using it also for validat-
ing themodel against the real environment via runtime veri�cation.
The chapter discusses this approach and demonstrates its feasibility
by presenting its implementation on top of a framework integrat-
ing the Agent Java PathFinder model checker. Trace expressions are
used to model the environment for both static formal veri�cation
and runtime veri�cation.

The contents of this chapter are published in (Ferrando et al., 2018a,b)
and derive from a joint collaboration with the

Autonomy and Veri�cation Laboratory1 at the University of Liverpool2

1http://cgi.csc.liv.ac.uk/~matt/AVLab/
2https://www.liverpool.ac.uk

178

http://cgi.csc.liv.ac.uk/~matt/AVLab/
https://www.liverpool.ac.uk

13 Recognising Assumption Violations in Autonomous Systems Veri�cation

13.1 Introduction

Static formal veri�cation of autonomous systems that interact with the real
world requires a model of the world to successfully accomplish the veri�cation
process. (Dennis et al., 2014) recommends using the simplest environment
model, in which any combination of the environmental predicates that corres-
pond to possible perceptions of the autonomous system is possible.

Consider an intelligent cruise control in an autonomous vehicle that can
perceive the environmental predicates:

• safe, meaning it is safe to accelerate,

• at_speed_limit, meaning that the vehicle reached its speed limit,

• driver_brakes and driver_accelerates, meaning that the driver is brak-
ing/accelerating.

In order to formally verify the behaviour of the cruise control agent, we
might randomly supply subsets of

{safe, at_speed_limit, driver_brakes, driver_accelerates}

where the generation of each subset causes branching in the state space ex-
ploration during veri�cation so that, ultimately, all possible combinations are
explored.

This model is an unstructured abstraction of the world, as it makes no speci�c
assumptions about the world behaviour and deals only with the possible
incoming perceptions that the system may react to. Unstructured abstractions
obviously lead to signi�cant state space explosion.

The state space explosion problem can be addressed by making assumptions
about the environment.

For instance, we might assume that a car cannot both brake and acceler-
ate at the same time: subsets of environmental predicates containing both
driver_brakes and driver_accelerates should not be supplied to the agent
during the static veri�cation stage, as they do not correspond to situations that
we believe likely in the actual environment. This structured abstraction of the
world is grounded on assumptions that help prune the possible perceptions
and hence control state space explosion.

Structured abstractions have advantages over unstructured ones, provided
that the assumptions they rely on are correct. Let us suppose that the cruise
control system crashes if the driver is accelerating and braking at the same
time. If the subsets of environmental predicates generated to verify it never
contain both driver_brakes and driver_accelerates, then the static formal
veri�cation succeeds but if one real driver, for whatever reason, operates both
the acceleration and brake pedals at the same time, the real system crashes!

In this chapter, we propose an approach for exploiting the advantages of
structured abstractions, while mitigating their risks. Our proposal consists
in modelling the structured abstraction in a formalism that can be used both

179

13 Recognising Assumption Violations in Autonomous Systems Veri�cation

for statically verifying the autonomous system’s behaviour via model check-
ing and for validating the model against the real environment by means of
runtime veri�cation (RV). If performed during a testing stage, RV of the actual
environment against its structured abstraction allows the developer to identify
situations not foreseen in the initial assumptions. He/she can revise them, gen-
erate a new structured abstraction, re-verify it via model checking, re-validate
it via RV once again, reaching in the end a “safe” abstraction. If RV takes place
after system deployment and assumption violations are detected, mechanisms
for handing control to a human, a failsafe system, or for performing ad hoc
reasoning should be invoked.

To demonstrate the feasibility of the proposed approach, we implemented
it on top of the MCAPL framework (Dennis, 2018; Dennis et al., 2012) (which
provides a model-checker for rational agents, see Section 3.7 for further details)
using trace expressions (Chapter 4) as the single formalism to generate both
the environment model and the runtime monitor.

We choose trace expressions instead of more widely used formalisms for
model checking like LTL because of their expressive power. In Section 4.5,
we demonstrated that trace expressions are able to express and verify sets
of traces that are context-free. When working in a RV scenario, trace expres-
sions are more expressive than LTL (Section 4.5). In this chapter, we keep the
presentation as simple as possible and do not stress the potential of such ex-
pressive power. However, this power opens up interesting scenarios discussed
in Section 13.5 and in Chapter 17.

13.2 State of the art

The growing popularity of model checking in industry is due to the possibility
of transforming domain-speci�c input models familiar to the developers into
“under the hood models” invisible to them and amenable to model checking
using existing techniques (Merwe, Merwe, and Visser, 2012). The idea behind
this work is similar: we use trace expressions as the front-end formalism
suitable for modeling behaviour patterns in systems made up of autonomous
entities and we transform them into under the hood models suitable for both
model checking and runtime veri�cation (RV). The main di�erence is that
trace expressions are not domain-speci�c, and although initially devised for
modeling protocols in multiagent system, they have been successfully adopted
for specifying di�erent kinds of behavioural patterns, including interactions
among objects in Java-like programs (Chapter 6 and (Ancona et al., 2017a))
and Internet of Things applications developed with Node.js3 (Ancona et al.,
2017b). This is both a strength and a weakness: a customised formalism for
di�erent domains would make it more usable by domain experts, at the cost
of some loss in generality.

“Enabling su�ciently precise yet tractable veri�cation” with models – be
them explicit or under the hood – of the real environment is a main issue

3https://nodejs.org/it/

180

https://nodejs.org/it/

13 Recognising Assumption Violations in Autonomous Systems Veri�cation

(Tkachuk, Dwyer, and Pasareanu, 2003). Developing “safe” environment mod-
els4 for model checking that are su�ciently precise to enable e�ective reason-
ing yet not so over-restrictive that they mask faulty system behaviours has
been understood as a signi�cant challenge since the early 2000s (Penix et al.,
2000). The Bandera Environment Generator (Tkachuk, Dwyer, and Pasareanu,
2003) is a toolset that automates the generation of environments to provide a
restricted form of modular model checking of Java programs. Although the
addressed problem is the same as ours, the approach is di�erent. We do not
automatically generate “safe by construction” trace expressions starting from
observations of the environment. Rather, we manually design and implement
a trace expression encoding our assumptions and validate it against the real
environment to empirically show that it is “safe”. Although our approach
requires a more accurate design stage and more manual work, it can be applied
to any system and environment; the automatic generation of the environment
model is instead inherently domain-dependent, and the Bandera Environment
Generator is in fact customized for model checking Java programs. A form of
semi-automatic environment model generation would be possible if we were
able to synthesise trace expressions from event traces collected from previous
observations5. The approach of Dhaussy et al. (Dhaussy, Roger, and Boniol,
2011) is closer to ours; the state space explosion is mitigated with requirements
relative to scenarios which are veri�ed instead of the full environment. In that
work the context – corresponding to our structured abstraction – is modelled
with the domain-speci�c Context Description Language, CDL. The main dif-
ference is that CDL is less expressive than trace expressions (recursion and
concatenation are not supported), and no methodology for checking the CDL
speci�cation against the real environment is discussed. In a similar way, in
(Desai, Dreossi, and Seshia, 2017) Desai et al. present a framework to combine
model checking and runtime veri�cation for robotic applications. They repres-
ent the discrete model of their system using the P language (Desai et al., 2013),
check the model and extract the assumptions deriving from such abstraction.
Despite sharing the same purpose, our work is not committed to any speci�c
case study and trace expressions are more expressive than STL speci�cations
(Maler and Nickovic, 2004) used in (Desai, Dreossi, and Seshia, 2017). Besides
CDL, hybrid automata (Alur et al., 2000; Henzinger, 1996) are another widely
adopted formalism for precise modelling of the real world. They do not solve
the question of whether the model accurately captures the environment, and
although RV of cyber-physical systems modelled with hybrid automata is a
lively and promising research �eld (Nguyen et al., 2015; Sistla, Žefran, and Feng,
2012), we are not aware of proposals where the same hybrid automaton model
undergoes both a model checking and a RV process, to both formally prove
system properties and validate the correctness of the environment model.

Investigation of model checking for MAS dates back to 1998 (Benerecetti,
Giunchiglia, and Sera�ni, 1998) and has continued to generate much follow

4“Environment models” and “structured abstractions of the environment” are used as syn-
onyms in this context.

5Exploring this issue is in our agenda, but it is not in the scope of this work.

181

13 Recognising Assumption Violations in Autonomous Systems Veri�cation

up work, for instance the Model Checking Agent Programming Languages
project6 (Bordini et al., 2006; Dennis et al., 2012), and other work (Lomuscio
and Raimondi, 2006; Raimondi and Lomuscio, 2007). Approaches to MAS RV
complement these and include the proposals spun o� from the SOCS project7

where the SCIFF computational logic framework (Alberti et al., 2005) is used to
provide the semantics of social integrity constraints. To model MAS interaction,
expectation-based semantics speci�es the links between the observed events
and the expected ones, providing a means to test run-time conformance of
an actual conversation with respect to a given interaction protocol (Torroni
et al., 2009). Similar work has been performed using commitments (Chesani
et al., 2009). None of the contributions above tackle the problem of recognising
assumption violations in structured abstractions via RV, for model checking
autonomous systems immersed in a real environment. This makes the content
of this chapter original in the panorama of model checking both “in general”,
and, more speci�cally, for autonomous systems and MAS.

13.3 Running Example

The MCAPL framework (Section 3.7) supports model checking of programs in
BDI-style languages via the implementation of interpreters for those languages
in Java. The framework implements program model-checking in which the
actual program to be veri�ed, not a model of it, is checked, and contains
the Agent Java PathFinder (AJPF) model checker which customises the Java
PathFinder (JPF) model checker for Java bytecodes8 (Section 3.7).

BDI-based languages are based on rational agency (Section 3.2). We use the
“Engineering Autonomous Space Software” (EASS) variant of Gwendolen
(Dennis, 2017), a language developed for programming agent-based autonom-
ous systems and verifying them in AJPF. EASS assumes an architecture in
which the rational agents are partnered with an abstraction engine that dis-
cretises continuous information from sensors in an explicit fashion (Dennis
et al., 2010, 2016).

We adopt the methodology from (Dennis et al., 2014) setting out the formal
veri�cation of rational agent components in autonomous systems. This uses
model checking to demonstrate that the rational agent always tries to act in
line with requirements and never deliberately chooses options that lead to
states the agent believes to be unsafe.

autonomous cruise control. The (slightly simpli�ed) EASS code
in Example 7 is for an agent implementing intelligent cruise control in an
autonomous vehicle. It uses standard syntactic conventions from BDI agent
languages:

• +!g indicates the addition of a goal,g;

6http://cgi.csc.liv.ac.uk/MCAPL/
7http://lia.deis.unibo.it/research/projects/SOCS/
8https://babelfish.arc.nasa.gov/trac/jpf

182

http://cgi.csc.liv.ac.uk/MCAPL/
http://lia.deis.unibo.it/research/projects/SOCS/
https://babelfish.arc.nasa.gov/trac/jpf

13 Recognising Assumption Violations in Autonomous Systems Veri�cation

• +b indicates the addition of a belief, b; and

• -b indicates the removal of a belief.

Plans follow the pattern

trigger : guard ← body;

The trigger is the addition of a goal or a belief (beliefs may be acquired thanks
to the operation of perception or as a result of internal deliberation); the guard
states conditions about the agent’s beliefs which must be true before the plan
can become active; and the body is a stack of deeds the agent performs in order
to execute the plan. These deeds typically involve the addition or deletion of
goals and beliefs, as well as actions (e.g. perf(accelerate), meaning “perform
the action of accelerating”) which indicate code delegated to non-rational parts
of the system.

According to the operational semantics of Gwendolen (Dennis, 2017),
the agent moves through a reasoning cycle polling an external environment
for perceptions; converting these into beliefs and creating intentions from
new beliefs; selecting an intention for consideration; if the intention has no
associated plan body, then the agent seeks a plan that matches the trigger event
and places the body of this plan on the deed stack; the agent then processes
the �rst deed, and places the intention at the end of the intention queue before
again performing perception. As an intention may be suspended while it waits
for some belief to become true, we use *b to indicate a deed that suspends
processing of an intention until b is believed. Plan guards are evaluated using
Prolog-style reasoning with reasoning rules of the form h :- body and literals
drawn from agent’s belief base. Negation is indicated with ~ and its semantics
is negation by failure as in Prolog.

Example 7 (Cruise Control Agent). When the car has a goal to be at the speed
limit, +! at_speed_limit, it can accelerate if it believes it to be safe, that there
are no incoming instructions from the human driver, and it does not already be-
lieve it is accelerating or is at the speed limit — it does this by removing any
belief that it is braking, adding a belief that it is accelerating, performing accel-
eration, then waiting until it no longer believes it is accelerating. If it does not
believe it is safe, believes the driver is accelerating or braking, or believes it is
already accelerating, then it waits for the situation to change. If it believes it is
at the speed limit, it maintains its speed having achieved its goal (which will be
dropped automatically, having been achieved).
If new beliefs arrive from the environment that the car is at the speed limit, no

longer at the speed limit, no longer safe, or the driver has accelerated or braked,
then it reacts appropriately. Note that even if the driver is trying to accelerate,
the agent only does so if it is safe.

1:Reasoning Rules :
2can_acce l e r a t e :− sa fe , ~ d r i v e r _ a c c e l e r a t e s ,
3~ d r i v e r _b r a ke s ;
4

183

13 Recognising Assumption Violations in Autonomous Systems Veri�cation

5: Init ial Goal : a t _ speed_ l im i t
6
7:Plans :
8+ ! a t _ speed_ l im i t :
9{ can_acce le ra te , ~ a c c e l e r a t i n g , ~ at_speed_ l im }
10← −brak ing , + a c c e l e r a t i n g , pe r f (a c c e l e r a t e) ,
11*~ a c c e l e r a t i n g ;
12+ ! a t _ speed_ l im i t : { ~ s a f e } ← * sa f e ;
13+ ! a t _ speed_ l im i t : { d r i v e r _ a c c e l e r a t e s }
14← *~ d r i v e r _ a c c e l e r a t e s ;
15+ ! a t _ speed_ l im i t : { d r i v e r _b r a ke s }
16← *~ d r i v e r _b r a ke s ;
17+ ! a t _ speed_ l im i t : { a c c e l e r a t i n g }
18← *~ a c c e l e r a t i n g ;
19+ at_speed_ l im : { can_acce le ra te , a t_speed_ l im }
20← −a c c e l e r a t i n g , −brak ing ,
21pe r f (mainta in_speed) ;
22−at_speed_ l im : { ~ at_speed_ l im }
23← + ! a t _ speed_ l im i t ;
24−sa f e : { ~ d r i v e r _b rakes , ~ sa fe , ~ b rak ing } ←
25−a c c e l e r a t i n g , + brak ing , pe r f (brake) ;
26+ d r i v e r _ a c c e l e r a t e s : { sa fe , ~ d r i v e r _b rakes ,
27d r i v e r _ a c c e l e r a t e s , ~ a c c e l e r a t i n g }
28← + a c c e l e r a t i n g , −brak ing , pe r f (a c c e l e r a t e) ;
29+ d r i v e r _b r a ke s : { d r i v e r _b rakes , ~ b rak ing } ←
30+ brak ing , −a c c e l e r a t i n g , pe r f (brake) ;

The cruise control agent has to be connected to either a physical vehicle
or a simulation. Similar EASS agents have been connected to both detailed
simulations of ground vehicles and physical vehicles (Dennis et al., 2016; Kamali
et al., 2017). Here we will consider embedding the agent within a multi-lane,
multi-vehicle motorway (highway) simulation.

The agent is connected to the simulator via a thin Java environment that
communicates using sockets. The environment reads simulated speeds of the
vehicles from the socket and publishes values for acceleration to the socket.
The information from sensors is then passed on to an abstraction engine that
converts it to discrete representations, shared with the rational agent as logical
predicates. The rational agent accesses these shared beliefs as perceptions.

Previously, the model of the combined behaviour of simulator, thin Java
environment, and abstraction engine used for veri�cation was unstructured:
all the possible combinations of the shared beliefs were explored. This is where
our proposal for modeling structured abstractions as trace expressions and
validating them via RV, as well as using them for model checking, comes into
play.

13.4 Recognising Assumption Violations

In this section we discuss how trace expressions can be suitably adopted for
specifying structured abstractions of the real world for use in AJPF. The idea
is generate both a suitable Java model for AJPF model checking and a runtime
monitor from the same trace expression. The monitor can detect if the real
(or simulated) environment violates the assumptions used during the static
veri�cation.

184

13 Recognising Assumption Violations in Autonomous Systems Veri�cation

13.4.1 AJPF Static Formal Veri�cation

The EASS implementation provides a Java class supporting the creation of
abstract models. Unstructured abstractions can be created by overriding in
a subclass its method add_random_beliefs which is called when the agent
requests an action execution or sleeps. This method should generate a set of
beliefs and add them to the environment’s percept base which the agent then
polls. It is assumed this implementation will randomly generate all possible sub-
sets of the shared beliefs relevant to the agent. For static veri�cation, therefore,
we want to generate this subclass from our trace expression. In normal opera-
tion, EASS abstraction engines communicate with the agent-based reasoning
engine (the ‘agent’) by performing assert_belief and remove_belief actions.
These actions are implemented by Java environments which also connect to
sensors and simulators. There are four such actions: assert_belief(b) asserts
a shared belief for all agents and remove_belief(b) removes shared belief
b from all agents. assert_belief(a, b) and remove_belief(a, b) alter the
available beliefs for a speci�c agent a. Our runtime monitor needs to observe
these events. We are also interested in any action performed by an agent, so
our runtime monitor must also observe calls to the executeAction method
that all EASS environments implement. Figure 13.1 gives an overview of this
system. A trace expression τ is used to generate an abstract model in Java used
to verify an agent in AJPF (the dotted box on the right of Figure 13.1). Once
this veri�cation is successfully completed, the veri�ed agent is used with an
abstraction engine, a thin Java environment, and the real world or external sim-
ulator. This is shown in the dotted box on the left of Figure 13.1. If, at any point,
the monitor observes an inconsistent event we can conclude that the abstrac-
tion used during veri�cation was incorrect. Depending upon the development
lifecycle stage reached so far di�erent measures will be possible, ranging from
re�ning the trace expression and re-executing the veri�cation-validation steps,
to involving a human or a failsafe system in the loop.

13.4.2 Event Types for AJPF Environments

We have identi�ed the assertion and removal of shared beliefs and the per-
formance of actions as the “events of interest” in our Java environments. Our
runtime monitor receives noti�cation of all actions in the environment as
events. It is possible to �exibly create a number of di�erent event types on
top of this structure, so we de�ne a number of default event types that are
widely used throughout the system. The following event types model events
involving shared beliefs:

• bel(b), where e ∈ bel(b) i� e = assert_belief (b);
• not_bel(b), where e ∈ not_bel(b) i� e = remove_belief (b);

We coalesce these as event set Eb and de�ne event types:

• action(any_action) where e ∈ action(any_action) i� e < Eb

185

13 Recognising Assumption Violations in Autonomous Systems Veri�cation

Abstract
Engine

Reasoning
Engine

Real
Environment

Java
Environment

perceptions

perceptions

beliefs

actions

actions AJPF

Java
Abstract Environment

actions

beliefs

τ

compile

m

Model Checking

yes/no

LTL

is valid?

Execution

Trace expressionmonitor

Figure 13 . 1 . General view.

• not_action where e ∈ not_action i� e ∈ Eb
• action(A) where e ∈ action(A) i� e < Eb and e = A

Abstract models in AJPF can be represented as automata, with unstructured
abstractions representing their most general form. The automaton states can be
divided into two parts: initial beliefs and actions. Initial Beliefs represents all the
shared beliefs that may be asserted before the system starts executing. After an
action is performed, more shared beliefs may be asserted. In the unstructured
abstractions used by the “standard” AJPF system the initial beliefs, and the
beliefs after each action, were generated at random.

Any structured abstraction will be one that places constraints upon the
possible transitions in the automaton. We represent an abstract model of the
real world as a set of possibly cyclic trace expressions modelled in Prolog. The
basic structure of the Prolog code is given in Figure 13.2. We abuse regular
expression syntax: as parentheses are used for grouping in trace expressions,
we adopt [and] to represent groupings within a regular expression; similarly,
since | is a trace expression operator, we use ‖ to indicate alternatives within the
regular expression. Here, e? indicates zero or one occurrences of the element
e . As we use Prolog, variables are represented by terms starting with an upper
case letter (e.g.,Actioni) and constants are represented by terms starting with a
lower case letter (e.g., bi , actioni)).

���n
i=1

indicates one or more trace expressions
composed via the trace expression shu�e operator, |. Similarly,

∨n
i=1 composes

expressions using∨ and
∧n

i=1 composes expressions using∧. Variables with the
same name will be uni�ed. Occurrences of Pre in (14.1) and (14.2) are intended

186

13 Recognising Assumption Violations in Autonomous Systems Veri�cation

Protocol = Pre ·(Cyclic [∧Constrs]?) (13.1)

Pre = [
���n
i=1

bel(bi):ϵ] ‖ [not_action : Pre∨ϵ] (13.2)

Cyclic = SinдleStep·Cyclic (13.3)

SinдleStep =
m∨
i=1

Actioni ·AddBelEv (13.4)

AddBelEv = not_action : AddBelEv∨ϵ (13.5)
Actioni = action(actioni):ProtocolBel (13.6)

ProtocolBel =
���k
i=1
(bel(bi):ϵ∨not_bel(bi):ϵ∨ϵ) (13.7)

Figure 13 .2 . Trace expression template for generating abstract environments.

to unify, and the variable names used in these positions in any instantiation of
this template should be the same.

The template in Figure 13.2 represents an unstructured abstraction in which
any subset of the beliefs, bi in (14.7) can occur after an action. Protocol (14.1)
is the main body of our trace expression. Pre (14.2) represents all events that
can be generated before the �rst action of an agent. Cyclic (14.3) is the trace
expression that describes the behaviour once the agent starts performing
actions. SinдleStep (14.4) represents a single action step. It is the union of the
trace expressions that describe the possible results of each action the agent
may take followed by AddBelEv which describes additional belief events after
the immediate results of the action – for instance if the agent sleeps and
other agents are acting. Action (14.6) consists of an action event followed by
ProtocolBel (14.7) which describes the possible belief events. Any given belief,bi
may appear in the shared belief base (bel(beliefi)), disappear (not_bel(beliefi))
or its status may be unchanged (ϵ).

Figure 13.2 contains an optional variable Constrs . If present this provides
constraints that structure the abstraction. The template for constraints is shown
in Figure 13.3. Constrs consists of an intersection of trace expressions of the
form FilterEventTypej�C

x
j . It appears at the top level of the trace expression

in an intersection (∧) with the repeatingCyclic step. This allows us to put con-
straints on belief events without considering at which action step they occur.
In this way, each time a constrained belief event is observed in a SinдleStep, we
can keep track of the fact. FilterEventTypej is an event type which denotes
only the events involved in Cx

j . Its purpose is to �lter out any events that
are not constrained by Cx

j , and matches bel(bj,1),not_bel(bj,1),bel(bj,2) and
not_bel(bj,2).

Each constraint represents a pairwise relationship between two belief events.
These are captured by the three trace expressions in (14.9), (14.10) and (14.11)
which describe the evolving behaviour of the four belief events of interest
where Bj,i is either the assertion or removal of bj, i and NBj, i is its converse – so

187

13 Recognising Assumption Violations in Autonomous Systems Veri�cation

Constrs =
o∧
j=1

FilterEventTypej�[C
1
j ‖ C

2
j] (13.8)

C1
j = (((Bj,1:ϵ) ∨ (NBj,2:ϵ))·C1

j) ∨ (NBj,1 : C2
j) (13.9)

C2
j = (((NBj,1:ϵ) ∨ (NBj,2:ϵ))·C2

j) ∨

(Bj,1:C1
j) ∨ (Bj,2:C3

j) (13.10)
C3
j = (((Bj,2:ϵ) ∨ (NBj,1:ϵ))·C3

j) ∨ (NBj,2 : C2
j) (13.11)

Bj,i = [bel(beliefj, i) ‖ not_bel(beliefj, i)] (13.12)
NBj,i = [bel(beliefj, i):ϵ ‖ not_bel(beliefj, i):ϵ] (13.13)

Figure 13 .3 . Trace Expressions for Constrs where Bj,i , NBj, i.

if Bj,i = bel(bj, i) then NBj, i = not_bel(bj, i) and vice versa. The three equations
capture the constraint that if Bj,1 has occurred then Bj,2 can not occur until
after NBj,1 has been observed and vice versa. The constraint either starts in
the state described by C1

j or C2
j depending upon whether only one of the

constrained belief events is possible in the initial state (C1
j) or both are (C2

j).

13.4.3 Abstract Model Generation

Once we have created a trace expression, we translate it into Java by im-
plementing add_random_beliefs. We omit the involved low level details (e.g.,
constructing appropriate class and package names) but just focus on the core as-
pects9. Our trace expression is de�ned according to the template in Figures 13.2
and 13.3. Many parts of these trace expressions are not directly translated into
Java; the sub-expressions relevant to the generation of abstract models are Pre
(14.2), SinдleStep (14.4) and Constrs (14.8). Note that the MCAPL framework
provides support for constructing logical predicates and adding them to the
belief base.

If Pre speci�es particular initial beliefs then the subclass adds these to the
agent’s belief base at the start. SinдleStep contains a union of trace expres-
sions of the form Action = action(action_name) : ProtocolBel. ProtocolBel =
|ki=1 (bel(bi) ∨ not_bel(bi)∨ϵ de�nes the set of belief events that may occur. We
de�ne the set B(ProtocolBel) as bi ∈ B(ProtocolBel) i� (bel(bi)∨not_bel(bi)∨ϵ)
is one of the interleaved trace expressions in ProtocolBel.

For each bi ∈ B(ProtocolBel) we de�ne a predicate in the environment class
and bind it to a Java �eld called bi .
Constrs constrains events by specifying pairwise exclusions between some

of them.

9Full source code can be found in the MCAPL distribution: mcapl.sourceforge.net. Code
for the examples is also available from the University of Liverpool together with experi-
mental data – DOI:10.17638/datacat.liverpool.ac.uk/438

188

mcapl.sourceforge.net
10.17638/datacat.liverpool.ac.uk/438

13 Recognising Assumption Violations in Autonomous Systems Veri�cation

For each Action trace expression we generate a corresponding if statement
inside the add_random_beliefs method.

1i f (ac t . ge tFunc to r () . equa ls ("action_name "))
2{ translation(ProtocolBel, Constrs) }

We construct a set of mutually exclusive belief events,Mx (Constrs), from
Constrs where (Bj,1,Bj,2) ∈ Mx (Constrs) i� FilterEventTypej�Constraintj
is one of the conjuncts ofConstrs andC1

j = (((Bj,1:ϵ) ∨ (NBj,2:ϵ))·C1
j) ∨ (NBj,1 :

C2
j) and C3

j = (((Bj,2:ϵ) ∨ (NBj,1:ϵ))·C3
j) ∨ (NBj,2 : C2

j).
The set of possible sets of belief events for our structured environment is:
PB(ProtocolBel,Constrs) =

{S | (∀bi ∈ B(ProtocolBel). bel(bi) ∈ S ∨ not_bel(bi) ∈ S)
∧ (∀(B1,B2) ∈ Mx (Constrs). B1 ∈ S ↔ B2 < S)} (13.14)

Say thatPB(ProtocolBel,Constrs) containsk sets of belief events, S j , 0 ≤ j < k .
We generate translation(ProtocolBel, Constrs), as follows:

1int asse r t_ random_int = random_int_generator (k) ;

where random_int_generator is a special method that generates random in-
tegers in a way that optimises the model checking in AJPF. For each S j we
generate

1i f (asse r t_ random_int == j)
2{ add_percepts(Sj) }

Here add_percepts(S j) adds bi to the percept base for each bel(bi) ∈ S j . We do
not need to handle the belief removal events, not_bel(bi) ∈ S j , because AJPF
automatically removes all percepts before calling add_random_beliefs.

Figures 13.4 and 13.5 show the trace expression modeling the cruise control
agent from Example 7. Pre is reused forAddBelEnv since, in this case, they are
the same trace expression. SinдleStep contains only one branch which matches
any action. ProtocolBel speci�es that the possible belief events are the assertion
and removal of safe, at_speed_lim, driver_accelerates and driver_brakes

We have two constraints. Firstly we assume that the driver never brakes and
accelerates at the same time. This establishes a mutual exclusion between
bel(driver_accelerates) and bel(driver_brakes). Initially either belief may
appear. Secondly, we assume the driver only accelerates if it is safe to do
so. This establishes a mutual exclusion between bel(driver_accelerates) and
not_bel(safe).

Initially we are in the state were we cannot observe bel(driver_accelerates).
brake_or_accelerate and accelerates_or_safe are event types that match the
relevant events for each constraint.

189

13 Recognising Assumption Violations in Autonomous Systems Veri�cation

Protocol = Pre ·(Cyclic ∧Constrs) (13.15)
Pre = ((not_action:Pre) ∨ ϵ) (13.16)

Cyclic = SinдleStep·Cyclic (13.17)
SinдleStep = action(any_action):(ProtocolBel ·Pre) (13.18)

Safe = ((bel(safe):ϵ) ∨ (not_bel(safe):ϵ) ∨ ϵ) (13.19)
AtSpeedLimit = ((bel(at_speed_lim):ϵ) ∨

(not_bel(at_speed_lim):ϵ) ∨ ϵ) (13.20)
Accel = ((bel(driver_accelerates):ϵ) ∨

(not_bel(driver_accelerates):ϵ) ∨ ϵ) (13.21)
Brakes = ((bel(driver_brakes):ϵ) ∨

(not_bel(driver_brakes):ϵ) ∨ ϵ) (13.22)
ProtocolBel = (Safe |AtSpeedLimit |Accel |Brakes) (13.23)

Figure 13 .4 . Trace expression for a Cruise Control Agent.

13.4.4 MCAPL Runtime Veri�cation

Since the MCAPL framework is implemented in Java, its integration with the
trace expressions runtime veri�cation engine or “monitor” (namely, the Prolog
engine that “executes” the δ transitions as presented in Section 14.2) was easy
using the JPL interface10 between Java and Prolog11.

In order to verify a trace expression τ modelled in Prolog, we supply the
runtime veri�cation engine with Prolog representations of the events taking
place in the environment. These are easily obtained from the abstraction engine
and the Java environment that links to sensors and actuators. The Java environ-
ment reports instances of assert_shared_belief, remove_shared_belief and
executeAction to the runtime veri�cation engine which checks if the event is
compliant with the current state of the modelled environment and reports any
violations that occur during execution12.

13.5 Discussion

AJPF’s property speci�cation language uses LTL extended with modalities for
BDI concepts such as beliefs (B(a,b) is interpreted as meaning agent a believes
b)13

We carried out experiments using the agent discussed in Example 7. When
model checked using a typical hand-constructed unstructured abstraction,
veri�cation takes 4,906 states and 32:17 minutes to verify that it is always the
case that eventually the car believes is it safe or that it is in the process of

10http://jpl7.org
11We reuse pre-existing work used to develop RIVERtools and the JADE-Connector (Chapter

14).
12Following the approach presented in Section 14.2.
13See Section 3.6 for further details.

190

http://jpl7.org

13 Recognising Assumption Violations in Autonomous Systems Veri�cation

Constrs = (brake_or_accelerate�BrakeOrAccelerate) ∧

(accelerates_or_safe�CanBeUnsafe) (13.24)
CanBeUnsafe = (bel(safe):AccelOrUnsafe) ∨ (((not_bel(safe):ϵ) ∨

(not_bel(driver_accelerates):ϵ))·CanBeUnsafe)
(13.25)

AccelOrUnsafe = (bel(driver_accelerates):CanAccel) ∨
(((not_bel(driver_acclerates):ϵ) ∨ (bel(safe):ϵ))·
AccelOrUnsafe) ∨ (not_bel(safe):CanBeUnsafe)

(13.26)
CanAccel = (not_bel(driver_accelerates):AccelOrUnsafe) ∨

(((bel(safe):ϵ) ∨(bel(driver_accelerates):ϵ))·CanAccel)
(13.27)

BrakeOrAccelerate = (bel(driver_accelerates):AccelOnly) ∨
(((not_bel(driver_accelerates):ϵ) ∨
(not_bel(driver_brakes):ϵ))· ∨
BrakeOrAccelerate)(bel(driver_brakes):BrakeOnly)

(13.28)
AccelOnly = (not_bel(driver_accelerates):BrakeOrAccelerate) ∨

(((bel(driver_accelerates):ϵ) ∨ (not_bel(driver_brakes):ϵ))·
AccelOnly) (13.29)

BrakeOnly = (not_bel(driver_brakes):BrakeOrAccelerate) ∨
(((bel(driver_brakes):ϵ) ∨ (not_bel(driver_accelerates):ϵ))·
BrakeOnly) (13.30)

Figure 13 .5 . Trace Expression for the Constraints on a Car where the driver only
accelerates when it is safe to do so, and never uses both brake and
acceleration pedal at the same time.

braking:

�(B(car , safe) → �(♦B(car , safe) ∨ B(car ,brakinд))) (P1)

The condition B(car , safe) → at the start of the formula considers the possibil-
ity that the car never believes it is safe since braking is only triggered when
the safe belief is removed.

To test our approach, we �rst used the trace expression in Figure 13.4 with
the omission ofConstrs : this trace expression is equivalent to an unstructured
abstraction, i.e., one where the percepts safe, at_speed_lim, driver_brakes,
and driver_accelerates could all either be true or false at any moment. Veri-
fying (P1) in an abstract model generated from this trace expression took 4,906
states and 30:37 minutes: the behaviour was exactly the same as that for the
unstructured model that had been created manually, and this helped validate
that trace expressions following the template in Figure 13.2 without constraints
create unstructured abstractions that behave the same way as hand crafted

191

13 Recognising Assumption Violations in Autonomous Systems Veri�cation

ones.
We then investigated the e�ect of structuring the model using the trace

expression in Figure 13.5, which adds constraints to that in Figure 13.4. With
this abstraction (P1) takes 8:22 minutes to prove using 1,677 states – this has
more than halved the time and the state space.

To illustrate how we cope with the risk that a structured abstraction may
not re�ect reality, we consider a version of the cruise control agent with slight
variations. It is widely considered important that an autonomous vehicle should
not be able to override the actions of a driver. In our previous example the
vehicle violates this rule – it would only let the driver accelerate if it was safe
to do so, and it would brake whenever it detected unsafe conditions even if the
driver was currently trying to accelerate. We adapted the program, removing
these restrictions.

This modi�ed program could not be veri�ed in the unstructured model be-
cause our property is not actually true in that model – if the driver continually
accelerates in an unsafe situation then the car can never brake. However, it is
true in the structured model which assumes that the driver never accelerates
if the situation is unsafe.

When we run this program in our simulator it is indeed possible to cause
a crash by accelerating in unsafe conditions. This is where the runtime veri-
�cation engine �ts in. The engine logs an exception at the moment when
the unsafe acceleration takes place. It generates the error message shown
below and also shows the current state of the trace expression, which is the
equivalent of (14.25) in Figure 13.5.

* * * DYNAMIC TYPE−CHECKING ERROR ** *
Message event (ab s t r a c t i on_ca r0 ,

a s se r t _ sha red (d r i v e r _ a c c e l e r a t e s))
cannot be accepted in the cu r r en t s t a t e

S_8 = (be l (s a f e) : S_6) \ / ((not_be l (s a f e) : ep s i l on) \ /
(not_be l (d r i v e r _ a c c e l e r a t e s) : ep s i l on)) * S_8])

This identi�es the system as now being in an unveri�ed state, as this accelera-
tion has violated the trace expression.

The example shows how we have addressed the development of a prin-
cipled mechanism for creating structured abstractions in a way that allows
us to provide at least some guarantee of the validity of our results. We have
demonstrated how trace expressions can be used as a unifying formalism
to generate both a structured abstraction for model checking and a runtime
monitor, providing a route for guarantees of the behaviour of a system that
has been veri�ed against an abstract model of the real world. Their expressive
power would pave the way to addressing challenging scenarios where:

1. the behaviour of the system is modeled with a trace expression τ without
expressive power limitations (for example, an expression representing
the set of all anbn traces, for any n ∈ N; this set of traces cannot be

192

13 Recognising Assumption Violations in Autonomous Systems Veri�cation

modeled in LTL) to allow speci�cations of complex environments;

2. τ is over-approximated (as shown in Chapter 12) and then translated
into the Java model;

3. the model checking stage is performed using the generated over-
approximating Java model;

4. the runtime veri�cation stage uses τ , with all its expressive power;
empirical results show that in most cases verifying whether a trace
belongs to the language de�ned by a trace expression is linear in the
lenght of the trace: this means that – even when the highest modeling
expressivity of the formalism is exploited – performances of RV remain
acceptable.

193

Part VI

Implementation and Case Study

In this part we present the tool that has been developed to support the trace
expression RV. Thanks to an IDE especially developed for supporting the trace
expression formalism, we can achieve the writing of properties and protocols
using trace expressions more intuitive, where the syntax and event types are
statically checked and the monitors are automatically generated.

194

14 Development of a framework supporting
trace expressions RV

“We are stuck with technology when
what we really want is just stu� that works.”

- Douglas Adams

The development of new formalisms and libraries to solve well
known problems is common in all computer science �elds. What is
less common is to �nd tools thatmake such new formalisms actually
usable also by those users which were not directly involved in the
development of the formalism itself. The same occurs in the context
of Runtime Veri�cation, where many formalisms and libraries have
been developed during the years, but only few of them are supported
by an Integrated Development Environment (IDE) that makes them
accessible to a wider audience. This chapter introduces RIVERtools,
the IDE which has been developed to support the de�nition of trace
expressions and their use for obtaining the runtime veri�cation of
our systems.

The contents of this chapter are published in
(Ancona et al., 2018b; Ferrando, 2017)

195

14 Development of a framework supporting trace expressions RV

14.1 Introduction

Di�erently from static veri�cation, very few tools expressly designed for the
runtime veri�cation of MAS exist. Besides (Alotaibi and Zedan, 2010; Bakar
and Selamat, 2013; Chesani et al., 2009; Meron and Mermet, 2006) and a few
others, the only works on runtime veri�cation of MAS are those that lead to
the development and re�nement of the trace expression formalism1.

As it happened for tools such as Jason (Section 3.3), Cartago2, and Moise3,
where the need of a more modular, �exible and standardized framework
brought to the creation of JaCaMo4, also for the RV of MAS there is the
pressing need of a general purpose framework, with the objective to be modu-
lar with respect to the target system (the system must be seen as a black-box)
and “programmer-friendly” focusing on the reuse of the developed software.

Following this aim we developed RIVERtools, an Integrated Development
Environment (IDE) for supporting the automatic generation of code to be
used for implementing a black-box RV engine for generic software systems -
focusing on challenging scenarios such as MAS.

RIVERtools is a generic, modular and domain independent IDE for achieving
the runtime veri�cation of any possible target system. Rather than other
solutions proposed in literature, RIVERtools was born as a “multi-target” IDE
for the generation of runtime monitors.

Obviously we can achieve the same results without using an IDE, but using
RIVERtools we have the support during the de�nition of our properties (sup-
ported by highlights, syntax and type checking), leaving the technical details
at a lower level that can be implemented just once for each possible target
system of interest (updating the compiler without changing the high level
speci�cation).

The RIVERtools main features can be summarized as follows:

• the support during the de�nition of our properties (using the trace ex-
pression formalism);

• the abstraction from the speci�c target domain, with RIVERtools we
can de�ne the speci�cation leaving all technical details to the compiler
(presented in Section 14.3);

• the automatic properties integration inside the runtime veri�cation pro-
cess;

• the extensibility because the RIVERtools’ structure is based on the pres-
ence of “connectors-to-something” (for each new target system to be
veri�ed, we de�ne a new “connector-to-target” updating the RIVERtools
compiler).

1https://www.google.it/search?q=runtime+verification+of+multiagent+
systems

2http://cartago.sourceforge.net
3http://moise.sourceforge.net
4http://jacamo.sourceforge.net

196

https://www.google.it/search?q=runtime+verification+of+multiagent+systems
https://www.google.it/search?q=runtime+verification+of+multiagent+systems
http://cartago.sourceforge.net
http://moise.sourceforge.net
http://jacamo.sourceforge.net

14 Development of a framework supporting trace expressions RV

The main objective of RIVERtools is to separate and generalize the writing
of monitors to achieve the runtime veri�cation of any possible target system.

In this chapter we focus on its initial exploitation for the MAS scenario, in
particular for the JADE framework (Section 3.4).

14.2 Trace expression RV using SWI-Prolog

As it has been repeated several times in this thesis, we have totally implemented
the trace expression syntax and semantics using SWI-Prolog.

The main reasons for this choice can be found in the support for de�ning
cyclic terms natively o�ered by SWI-Prolog. Thanks to this simpli�cation, the
translation of a trace expression in its counterpart implemented in SWI-Prolog
is extremely direct. Also the trace expressions operational semantics can be
easily represented inside SWI-Prolog, translating each rule in an equivalent
logic predicate. Finally, not for importance, SWI-Prolog is a well-know frame-
work and is one of the most used. Thanks to this, the state of the art is full of
integration libraries that allow interacting with other programming languages;
in our case, since the target system will be implemented using JADE, we will
exploit the integration with the Java language.

Trace expressions can be modelled as Prolog terms and by exploiting syn-
tactic equations where the same variable can appear both to the left and to
the right of the “=” syntactic equality symbol, recursive trace expressions can
be easily de�ned (points 1 and 2 in the list below). This feature is supported by
most Prolog implementations, including SWI-Prolog, and allows us to de�ne
the trace expressions shown in the examples provided so far, using almost
the same syntax. The adoption of Prolog is a winning choice not only for
representing trace expressions, but also for implementing their semantics and
for manipulating them.

Provided that some connector between the real system to be observed
and a SWI-Prolog piece of code exists or can be implemented (point 3 in
the list below), the development of a SWI-Prolog trace expression-driven
monitor observing the events and verifying whether they comply with the trace
expression or not, can be automatically generated from the trace expression
Prolog representation (point 4 and 5 in the list below). This set of events can
be generated by any possible system (black-box approach), the only need is
that it must be able to communicate with our SWI-Prolog speci�cation.

The states are maintained by SWI-Prolog in its local knowledge base, to
allow the monitor to retrieve the current set of states, query each of them, and
update the knowledge base with newly generated states.

Having in mind these considerations, the corresponding RV pipeline can be
summarized as:

1. the implementation of the operational semantics modeled by δ (Section
4.2.3) in SWI-Prolog;

2. the de�nition of a trace expression in SWI-Prolog;

197

14 Development of a framework supporting trace expressions RV

3. the implementation of a library to allow the communication between
SWI-Prolog and the target system we want to verify (in the following
we will refer to it as the connector);

4. the writing of a “main” �le which uses this library;

5. the execution of the “main” �le to perform the runtime veri�cation of
the target system.

What is extremely important to note is that the components involved in
the RV process are: a SWI-Prolog library (1), a trace expression (2), a library
to integrate SWI-Prolog with the system (the connector) (3) and a �le to start
everything correctly (4). But among these, only the trace expression (2) needs
to be de�ned each time by the programmer (inside SWI-Prolog as introduced
above). In fact, when the target system is chosen, (1) and (3) can be implemented
once and for all; and the “main” �le (4) can be automatically generated starting
from the trace expression (2).

Following this intuition, we created an IDE which supports the de�nition of
our speci�cations through trace expression and that automatically generates of
all the code necessary to achieve the runtime veri�cation of our target system.
As we explained before, RIVERtools is based on the concept of “connector-to-
target”; in the following, we consider its exploitation using the “connector-to-
JADE” in order to verify our MAS implemented using JADE5.

14.3 RIVERtools

RIVERtools has been developed using Xtext6, a framework for the develop-
ment of programming languages and domain-speci�c languages which can
be integrated as an Eclipse7 plugin. With respect to other frameworks, Xtext
has been chosen above all for its support to the Xtend8 language (a dialect of
Java), that makes the development of Eclipse plugin very fast and intuitive.

In Figure 14.1(left), a high level summarization of how the RIVERtools IDE
works is presented. First of all, the programmer (the user) can write the trace
expression inside RIVERtools. This phase is supported by:

• syntax checking,

• type checking (contractiveness, decentralizable, and so on),

• roles, event types and events de�nition, and so on.

Referring to the second point, a trace expression is contractive if all its in�nite
paths contain the pre�x ‘:’ operator (Section 4.2.3) and can be decentralized (for
decentralized runtime veri�cation purposes) only if it satis�es a set of good

5JADE is the only target system supported by RIVERtools for now.
6https://eclipse.org/Xtext/
7https://www.eclipse.org
8http://www.eclipse.org/xtend/

198

https://eclipse.org/Xtext/
https://www.eclipse.org
http://www.eclipse.org/xtend/

14 Development of a framework supporting trace expressions RV

Connector System

userRIVERtools

τ

SWI-Prolog

compile

.pl .*

Jade

user

RIVERtools

τ
Jade

Connector

SWI-Prolog

compile

Jason
Jason

Connector

Node.js
Node

Connector

compile

compile

.pl .java

.pl .asl

.pl .js

Figure 14.1 . RIVERtools general representation (left) and its exploitation in three
di�erent scenarios: JADE, Jason and Node.js (right).

properties: connectedness for sequence and unique point of choice (Chapter 8
and Chapter 9).

Both contractivennes and decentralizability checks are provided by RIVER-
tools.

Keeping in mind the summarization made in Section 14.2, we have a trace
expression de�ned using RIVERtools, the SWI-Prolog library and the connector
to the target system.

Starting from these, we need to create the SWI-Prolog representation of the
trace expression which will be used inside the SWI-Prolog library (where the
trace expression operational semantics is implemented), and the “main” �le to
properly initialize and run the connector. These two �les are automatically
generated by RIVERtools by compiling the trace expression.

In more detail, the new RV pipeline using the trace expression formalism
with the RIVERtools integration can be summarized as:

1. the user writes the trace expression inside RIVERtools and chooses the
target system;

2. RIVERtools checks the correctness of the trace expression and, if it is
correct, generates the SWI-Prolog representation of the trace expression
and the “main” �le for the target system;

3. the “main” �le, using the SWI-Prolog library and the connector to the
target system, can be used by the user to start the RV process.

Figure 14.1(right) shows the �exibility of the proposed approach. As an
example, if the target system is JADE, RIVERtools compiles the trace expression
τ into one SWI-Prolog �le and one Java �le: the second �le is indeed dependent
on the target system; for JADE it is a Java �le, for Jason it would be an ASL
�le and for Node.js it would be a Javascript one.

The grammar

The trace expression structure that is recognized and managed by RIVERtools
is expressed by the grammar below.

199

14 Development of a framework supporting trace expressions RV

〈 trace_expression 〉 ::= ‘trace_expression’ ‘{’
‘id:’ 〈 atom 〉
‘target:’ 〈 tarдet 〉
‘body:’ 〈 term 〉+
‘roles:’ 〈 role 〉*
‘types:’

(〈 type 〉‘:’ ‘{’
(〈 role 〉 ‘=>’ 〈 role 〉 ‘:’ 〈 content 〉 (‘[’ (〈 condition 〉)+ ‘]’)?)+

}’ ‘[’ 〈 channel 〉 ‘]’)*
(‘threshold:’ 〈 reliability 〉)?
(‘channels:’ (〈 channel 〉 (‘[’ 〈 reliability 〉 ‘]’)?)+)?

‘}’
There are seven di�erent �elds:

• id: is the identi�er of the protocol (the protocol name for instance);

• target: is the target system to verify (only JADE for now);

• body: is the collection of terms representing the body of the protocol, it
follows the trace expression syntax presented in Section 4.2.3;

• roles: is the set of roles involved in the event types of the protocol (the
roles are the agents since the target is set to JADE);

• types: is the set of event types used in body;

• threshold: (optional) is the minimum level for the reliability allowed by
the protocol (it is the likelihood for the channel, see Chapter 8);

• channels: (optional) is the set of channels available for the communication
between the roles.

We can better understand the syntax through an example.

in terac t ion_trace_express ion {
id : p ing_pong
t a rge t : j a d e
body :

main <− ping : pong : main
ro les :

a l i c e
bob

types :
p ing : { a l i c e => bob : h e l l o } [e m a i l]
pong : { bob => a l i c e : world } [sms]

threshold : 0 . 7
channels :

e m a i l [0 . 8]
sms

}

This is a simpli�ed representation of the ping-pong protocol presented in
Section 4.3.1.

200

14 Development of a framework supporting trace expressions RV

Since the target system is set to jade – the only available for now – the
roles involved are automatically considered as agents, in particular here we
have two agents involved: alice and bob.

Since the target �eld is set to jade, the roles are interpreted as the name
of the agents involved in the interaction protocol. For this reason, in the entire
chapter we will consider the terms role and agent synonyms.

The protocol identi�er is ping_pong, and its de�nition (the body) consists
in one ping followed by one pong followed by one ping and so on in�nitely.

The event types involved in the protocol are explicitly de�ned:

• ping corresponds to the interaction event hello sent by alice to bob

using the email channel, and

• pong corresponds to the interaction event world sent by bob to alice

using the sms channel.

These two channels must be also de�ned with their respective reliabilities
(likelihoods, from 0, not reliable, to 1, totally reliable); for instance in this case
we have that the sms channel (the deault is 1 if not speci�ed otherwise) is
more reliable than the email channel (0.8).

In RIVERtools the concept of reliability of the channels is the implementation
corresponding to the likelihood concept presented in Chapter 8.

The threshold �eld is used to set the level of reliability under which we do not
trust a channel. When the reliability of a channel is under the threshold RIVER-
tools automatically considers “optional” all the event types using that channel.
For instance, if we have a channel sms with reliability 0.3, the threshold set
to 0.7, and an event type ping:{alice => bob : hello}[sms]; each time
we use ping inside the body �eld, i.e. ping:t (where t is the continuation
of the trace expression after the pre�x operator), RIVERtools automatically
compiles it in ((ping:epsilon)\/(epsilon))*(t) meaning that the event
matching ping can be missing (* is the corresponding representation of the
concatenation operator · inside RIVERtools, the syntax for the other operators
is unchanged). If we set the threshold to a smaller value, for instance 0.2,
we are relaxing our reliability requirements and, since the sms channel has a
greater reliability value, it will not be modi�ed by RIVERtools because we are
trusting all the channels with reliability greater than 0.2.

In the case of a limit scenario where the reliability of a channel is 0, RIVER-
tools will remove from the protocol all the occurrences of the event types using
it. This particular case becomes interesting when we focus on distribution fea-
tures, because we can write a good protocol in which we explicit all the event
interactions but when we exploit it in a real world we discover that not all
events are observable (partial observability problem, as we already presented
in Section 8.5). This issue can bring to have missing information during the
decentralization of our speci�cations. Thanks to the explicit representation of
such reliability absence, RIVERtools can analyze the trace expression consid-
ering these kind of unavailability and can achieve a correct decentralization
without losing information (exploiting the Decamon algorithm, see Chapter

201

14 Development of a framework supporting trace expressions RV

9).
The channel integration inside the runtime veri�cation process is a task for

the connector and it is totally domain dependent.
When a channel is not indicated for an event type, the default one is chosen

whose reliability (likelihood) is 1. The same happens for the channels, if the
reliability is not given, the reliability is set to 1 (in the ping_pong example
the sms channel has reliability 1).

Starting from the trace expression, RIVERtools generates its SWI-Prolog
implementation and the system dependent “main” �le (in this case a Java
�le since the target is JADE) to use the JADE-Connector and the SWI-Prolog
library. The programmer will provide its own MAS implemented in JADE and
using the “main” �le it will be possible to perform RV on it.

In more details, since JADE is a Java framework used to implement MAS,
the JADE-Connector is a Java library containing both all the primitives to
sni� the events generated by the agents developed by the programmer and the
code necessary to use the SWI-Prolog library containing the trace expression
semantics implementation. In this way, the only part that RIVERtools must
generate is the SWI-Prolog implementation of the trace expression, all the rest
is �xed and can be reused (Figure 14.2). It will be enough to run the “main” �le
(Java) providing:

• the agents developed by the programmer;

• the JADE-Connector library (in the build path);

• the SWI-Prolog library (used by the JADE-Connector).

RIVERtools

τ

- syntax checking
- events and event types checking
- contractiveness checking
- decentralization checking

……………
……………
……………
……………
…………

main.java

……………
……………
……………
……………
…………

.pl

Trace expressions
operational semantics

implemented in SWI-Prolog

MAS

JadeConnector.jar

monitor lib.

JPL

Jade

user

compile

compile

trace expression compiled
in SWI-Prolog

.pl

write run

create

include

query

all the time

once for target

once for all

Figure 14.2 . RIVERtools exploited in JADE.

202

14 Development of a framework supporting trace expressions RV

In Figure 14.2 we used colours to di�erentiate the framework parts taking
into account the timing. Since the trace expression represents the protocol
we want to verify at runtime, it is the part that changes in each new scenario.
Consequently, also the automatically generated SWI-Prolog implementation
and “main” �le change each time (all these parts are in blue). The target
system is JADE, thus we have a JADE-Connector that implements all the
monitoring process logic and the communication with the SWI-Prolog library.
The connector changes only when we change the target system, since here
we are focusing on JADE, the connector is used for all the possible scenarios
implemented in JADE (the red part). Trace expressions have been successfully
implemented in SWI-Prolog, with their syntax and semantics. Since one of
the objectives of the connector is the communication with the SWI-Prolog
library, the implementation of the trace expression formalism has been done
once and for all. If in the future we will be interested in adding a new target
system, it will be enough developing the corresponding connector in order to
communicate with the SWI-Prolog implementation.

Before showing an example directly implemented using RIVERtools, we
need to clarify better what is the JADE-Connector and the SWI-Prolog library.

m

a1

a2

a3

Trace
expression JPL

SWI-Prolog
JADEA Java Interface to Prolog

Figure 14.3 . Abstract view of how JPL is used inside the JADE-Connector.

The JADE-Connector is the Java library that has been developed during the
Ph.D. program in order to monitor MAS implemented in JADE. In order to use
this library is enough to add it to the build path of a JADE project. After that,
we can use the library to create and run one or more monitors simply calling
the corresponding implemented functions.

The SWI-Prolog library (on the left in Figure 14.3, and in the right bottom
of Figure 14.2) handles all the issues concerning the representation of our
trace expressions. In order to use this library inside the JADE-Connector, we
exploited JPL9 (Java interface to ProLog). Using JPL (Figure 14.3 and Figure 14.2)
is possible to call SWI-Prolog predicates directly from Java. In this way, with
the JADE-Connector we are able to observe the events generated inside our
MAS in JADE, and through JPL, we can query our trace expression represented
and maintained inside SWI-Prolog10. As previously observed, and graphically

9http://www.swi-prolog.org/packages/jpl/java_api/index.html
10The JADE-Connector, the SWI-Prolog JPL integration and the RIVERtools eclipse plugin

projects are all available on GitHub: https://github.com/AngeloFerrando/.

203

http://www.swi-prolog.org/packages/jpl/java_api/index.html
https://github.com/AngeloFerrando/

14 Development of a framework supporting trace expressions RV

showed in Figure 14.2, this part is totally independent from the current system
and speci�cation used. Thanks to this, we can reuse our JADE-Connector for
every possible scenarios in JADE. It is enough to change: the target MAS and
the protocol.

14.3.1 An example using RIVERtools

Reconsidering the book shop example presented in Section 8.4. Let us suppose
to have a MAS implemented in JADE representing a it. The involved agents
are: alice, barbara, carol, dave, emily and frank. For clarity we brie�y
reformulate in natural language the book shop example as follow:

1. the agent alice sends a whatsAppmessage to the agent barbara asking
to buy a book;

2. the agent barbara sends an email message to the agent carol asking
to reserve the book in the bookshop;

3. the agent carol sends a whatsApp message to the agent dave asking
to check the availability of the book;

4. the agent dave checks the availability of the book, and if the book is
available

a) it sends a whatsApp message to the agent emily asking to take
the book in the bookshop;

b) the agent emily sends an email message to the agent barbara
saying that the book is available in the bookshop.

otherwise
a) it sends an email message to the agent frank asking to order the

book;
b) the agent frank sends a whatsApp message to the agent barbara

saying that the book will be availabel in the bookshop in two days.

The corresponding trace expression representation inside RIVERtools is:

204

14 Development of a framework supporting trace expressions RV

Listing 14.1 . Book-shop trace expression written inside RIVERtools.
in terac t ion_trace_express ion {

id : book_purchase
t a rge t : j a d e
body :

main <− buy : r e s e r v e : c h e c k A v a i l :
(t ake2Shop : avai lNow : epsi lon \/

o r d e r : a v a i l 2 D a y s : epsi lon)
ro les :

a l i c e , ba rbara , c a r o l , dave , emily , f r a n k
types :

buy : { a l i c e => b a r b a r a : buy_me_book } [whatsApp]
r e s e r v e : { b a r b a r a => c a r o l : reserve_me_book } [e m a i l]
c h e c k A v a i l : { c a r o l => dave : i s _ a v a i l a b l e ? } [whatsApp]
take2Shop : { dave => emi ly : send_me_book } [whatsApp]
avai lNow : { emi ly => b a r b a r a : b o o k _ a v a i l a b l e } [e m a i l]
o r d e r : { dave => f r a n k : order_book } [e m a i l]
a v a i l 2 D a y s : { f r a n k => b a r b a r a : book_ in_2_days } [whatsApp]

threshold : 0 . 6
channels :

e m a i l [0]
whatsApp [1]

}

In this example we have two kinds of channels used by the agents to com-
municate: email and whatsApp. We point out the reliability of the two cor-
responding channels. The whatsApp channel has reliability set to 1, while
the email channel has the reliability set to 0. This means that, during RV, we
expect the monitor not to be able to observe messages passed on the email

channel. This may be due to any reason, for example lack of permissions or
unavailability of information. Thanks to the presence of explicitly declared
channels, RIVERtools can take into account the channel reliability during the
correctness checking for the trace expression. Channel reliability may impact
on contractiveness and decentralization of the original trace expression (as
observed in Section 14.3 and Chapter 8): RIVERtools takes channel reliability
into account when automatically performs those checks.

Compiling this trace expression, RIVERtools generates the two �les

• book_purchase.pl and

• BookPurchase.java.

Providing the connector library for JADE and the MAS implementation of the
book-shop, it will be enough to execute the main method of the BookPurchase
class to achieve the RV of a JADE MAS. Once obtained this Java class and the
trace expression SWI-Prolog representation, the developer can simply execute
the veri�er without adding a single line of code.

205

14 Development of a framework supporting trace expressions RV

Listing 14.2 . BookPurchase.java automatically generated by RIVERtools.
public c l a s s BookPurchase {

public s t a t i c void main (S t r i n g [] a r g s)
throws S t a l e P r o x y E x c e p t i o n , I O E x c e p t i o n {

/ ∗ C a l l a t t h e SWI−P r o l o g l i b r a r y ∗ /
J P L I n i t i a l i z e r . i n i t () ;

/ ∗ R e g i s t r a t i o n o f t h e t r a c e e x p r e s s i o n g e n e r a t e d by R I VER t o o l s ∗ /
T r a c e E x p r e s s i o n tExp = new T r a c e E x p r e s s i o n (" book_purchase . p l ") ;

/ ∗ I n i t i a l i z e JADE env i r onmen t ∗ /
j a d e . c o r e . Runtime runt ime = j a d e . c o r e . Runtime . i n s t a n c e () ;
P r o f i l e p r o f i l e = new P r o f i l e I m p l () ;
AgentConta iner c o n t a i n e r = runt ime . c r e a t e M a i n C o n t a i n e r (p r o f i l e) ;

/ ∗ C r e a t e t h e cus tom d e f i n e d a g e n t s
(d e f a u l t a r e i n s t a n c e s o f Agent c l a s s) ∗ /

L i s t < A g e n t C o n t r o l l e r > a g e n t s = new A r r a y L i s t < > () ;
Agent a l i c e = new Agent () ;
A g e n t C o n t r o l l e r a l i c e C = c o n t a i n e r . acceptNewAgent (" a l i c e " , a l i c e) ;
a g e n t s . add (a l i c e C) ;

/ / t h e same f o r barbara , c a r o l , dave , em i l y and f r ank
/ / . . .

/ ∗ C r e a t e a s i n g l e c e n t r a l i z e d mon i t o r
v e r i f y i n g t h e t r a c e e x p r e s s i o n tExp ∗ /

S n i f f e r M o n i t o r F a c t o r y
. c r e a t e A n d R u n C e n t r a l i z e d M o n i t o r (tExp , c o n t a i n e r , a g e n t s) ;

/ ∗ Channe l s c r e a t i o n (h e r e a r e s imu l a t e d) ∗ /
Channel . addChannel (new S imula tedChanne l (" e m a i l " , 0)) ;
Channel . addChannel (new S imula tedChanne l (" whatsapp " , 1)) ;

/ ∗ Run t h e a g e n t s ∗ /
for (Agent agen t : a g e n t s) {

agen t . s t a r t () ;
}

}

The Java class reported in Listing 14.2 is what we have been de�ning for
the entire chapter the “main” �le. The BookPurchase Java class is actually
the content of the “main” �le and is automatically generated starting from
the trace expression de�ned inside RIVERtools. Looking at the code, we can
see how this class makes full use of the JADE-Connector, starting from the
JPLInitializer class, used for initializing the SWI-Prolog environment. Inside
the JADE-Connector naturally we �nd also the corresponding implementation
of trace expressions (TraceExpression Java class). And, thanks to the presence
of a Sni�erMonitorFactory, we can create and run the monitors (sni�ers) very
easily.

As already mentioned before, the JADE-Connector can be used directly as
a Java library, it is enough to include it into the java build path. The class

206

14 Development of a framework supporting trace expressions RV

automatically generated and reported in Listing 14.2 could have been written
manually without using RIVERtools. But, using RIVERtools we have all the
advantages of syntax and type checking on trace expressions, without the
necessity to write Java code that can be automatically generated and that is
more or less always the same11.

14.3.2 Decentralizing the Example with RIVERtools

In Chapter 8 and Chapter 9 we presented and solved the problem of how
to decentralize our global AIPs represented using trace expressions. These
features are also included inside RIVERtools.

Considering again the book-shop example, inside RIVERtools we can de�ne
more complex aspects related to the veri�cation of properties, as it follows:

Listing 14.3 . Manual decentralization of book-shop trace expression in RIVERtools.
in terac t ion_trace_express ion {

id : book_purchase
t a rge t : j a d e
body :

main <− buy : r e s e r v e : c h e c k A v a i l :
(t ake2Shop : avai lNow : epsi lon \/

o r d e r : a v a i l 2 D a y s : epsi lon)
ro les :

a l i c e , ba rbara , c a r o l , dave , emily , f r a n k
types :

buy : { a l i c e => b a r b a r a : buy_me_book } [whatsApp]
r e s e r v e : { b a r b a r a => c a r o l : reserve_me_book } [e m a i l]
c h e c k A v a i l : { c a r o l => dave : i s _ a v a i l a b l e ? } [whatsApp]
take2Shop : { dave => emi ly : send_me_book } [whatsApp]
avai lNow : { emi ly => b a r b a r a : b o o k _ a v a i l a b l e } [e m a i l]
o r d e r : { dave => f r a n k : order_book } [e m a i l]
a v a i l 2 D a y s : { f r a n k => b a r b a r a : book_ in_2_days } [whatsApp]

threshold : 0 . 6
channels :

e m a i l [0]
whatsApp [1]

decentra l i zed : t r u e
par t i t i on : [[a l i c e] [b a r b a r a dave] [emi ly c a r o l] [f r a n k]]

}

By setting decentralized to true, we are saying to RIVERtools that we
want to decentralize the RV of the MAS. We can also suggest the partition of
agents that will be used for guiding the decentralization of the monitors at
runtime. In this speci�c scenario we decided to monitor barbara and dave

together, emily and carol together, and alice and frank separately. In this
way we will generate 4 di�erent monitors at runtime for the 4 di�erent parts
composing our chosen partition.
11Something that would easily end in repetitive copy and paste of Java code.

207

14 Development of a framework supporting trace expressions RV

Listing 14.4 . BookPurchase.java automatically generated by RIVERtools where
we decentralize the RV on a �xed partition.

public c l a s s BookPurchase {
public s t a t i c void main (S t r i n g [] a r g s)

throws S t a l e P r o x y E x c e p t i o n , . . . , D e c e n t r a l i z e d P a r t i t i o n N o t F o u n d E x c e p t i o n {

/ ∗ C a l l a t t h e SWI−P r o l o g l i b r a r y ∗ /
J P L I n i t i a l i z e r . i n i t () ;

/ ∗ R e g i s t r a t i o n o f t h e t r a c e e x p r e s s i o n g e n e r a t e d by R I VER t o o l s ∗ /
T r a c e E x p r e s s i o n tExp = new T r a c e E x p r e s s i o n (" book_purchase . p l ") ;

/ ∗ I n i t i a l i z e JADE env i r onmen t ∗ /
j a d e . c o r e . Runtime runt ime = j a d e . c o r e . Runtime . i n s t a n c e () ;
P r o f i l e p r o f i l e = new P r o f i l e I m p l () ;
AgentConta iner c o n t a i n e r = runt ime . c r e a t e M a i n C o n t a i n e r (p r o f i l e) ;

/ ∗ C r e a t e t h e cus tom d e f i n e d a g e n t s
(d e f a u l t a r e i n s t a n c e s o f Agent c l a s s) ∗ /

L i s t < A g e n t C o n t r o l l e r > a g e n t s = new A r r a y L i s t < > () ;
Agent a l i c e = new Agent () ;
A g e n t C o n t r o l l e r a l i c e C = c o n t a i n e r . acceptNewAgent (" a l i c e " , a l i c e) ;
a g e n t s . add (a l i c e C) ;

/ / t h e same f o r barbara , c a r o l , dave , em i l y and f r ank
/ / . . .

/ ∗ C r e a t e and S e t t h e p a r t i t i o n ∗ /
L i s t < L i s t < S t r i n g >> groups = new A r r a y L i s t < > () ;
L i s t < S t r i n g > group = new A r r a y L i s t < > () ; groups . add (group) ;
group . add (" a l i c e ") ; / ∗ [a l i c e] ∗ /
group = new A r r a y L i s t < > () ; groups . add (group) ;
group . add (" b a r b a r a ") ; group . add (" dave ") ; / ∗ [b a r ba ra dave] ∗ /
group = new A r r a y L i s t < > () ; groups . add (group) ;
group . add (" emi ly ") ; group . add (" c a r o l ") ; / ∗ [em i l y c a r o l] ∗ /
group = new A r r a y L i s t < > () ; groups . add (group) ;
group . add (" f r a n k ") ; / ∗ [f r ank] ∗ /
P a r t i t i o n < S t r i n g > p a r t i t i o n = new P a r t i t i o n < >(groups) ;

/ ∗ D e c e n t r a l i z e d mon i t o r s ∗ /
for (Monitor m :

S n i f f e r M o n i t o r F a c t o r y
. c r e a t e D e c e n t r a l i z e d M o n i t o r s (tExp , p a r t i t i o n , a g e n t s)) {

c o n t a i n e r . acceptNewAgent (m. getMonitorName () , m) . s t a r t () ;
}

/ ∗ Channe l s c r e a t i o n (h e r e a r e s imu l a t e d) ∗ /
Channel . addChannel (new S imula tedChanne l (" e m a i l " , 0)) ;
Channel . addChannel (new S imula tedChanne l (" whatsapp " , 1)) ;

/ ∗ Run t h e a g e n t s ∗ /
for (Agent agen t : a g e n t s) {

agen t . s t a r t () ;
}

}

208

14 Development of a framework supporting trace expressions RV

RIVERtools does not only support the suggestion of a partition, but also
integrates the DecAMon algorithm, presented in Chapter 9. Thanks to the
DecAMon algorithm, RIVERtools can analyze the trace expression with respect
to the proposed partition, and can understand if the partition is a monitoring
safe partition or not (De�nition 11). If the suggested partition is not monitoring
safe, RIVERtools will raise an error asking the developer to modify it.

RIVERtools supports also a more automatic way to decentralize the speci�c-
ation without asking the developer to suggest a speci�c one. To be more clear,
RIVERtools supports the automatic generation of monitoring safe partitions.
If the developer wants to decentralize the runtime veri�cation without caring
about which (monitoring safe) partition has been selected, RIVERtools allows
such kind of speci�cation.

Modifying again the same example, we can have as follows.

Listing 14.5 . Automatic decentralization of book-shop trace expression in RIVER-
tools.

in terac t ion_trace_express ion {
id : book_purchase
t a rge t : j a d e
body :

main <− buy : r e s e r v e : c h e c k A v a i l :
(t ake2Shop : avai lNow : epsi lon \/

o r d e r : a v a i l 2 D a y s : epsi lon)
ro les :

a l i c e , ba rbara , c a r o l , dave , emily , f r a n k
types :

buy : { a l i c e => b a r b a r a : buy_me_book } [whatsApp]
r e s e r v e : { b a r b a r a => c a r o l : reserve_me_book } [e m a i l]
c h e c k A v a i l : { c a r o l => dave : i s _ a v a i l a b l e ? } [whatsApp]
take2Shop : { dave => emi ly : send_me_book } [whatsApp]
avai lNow : { emi ly => b a r b a r a : b o o k _ a v a i l a b l e } [e m a i l]
o r d e r : { dave => f r a n k : order_book } [e m a i l]
a v a i l 2 D a y s : { f r a n k => b a r b a r a : book_ in_2_days } [whatsApp]

threshold : 0 . 6
channels :

e m a i l [0]
whatsApp [1]

decentra l i zed : t r u e
minimal : t r u e
cons tra ints :

a l i c e −><− c a r o l
b a r b a r a <−−> dave

number_of_monitors : [2 , 4]
roles_for_monitor : [3 , 5]

}

This time we introduced 4 di�erent new �elds inside the speci�cation. The
minimal �eld is used by the developer in order to inform RIVERtools that
the partition that will be automatically generated and used for RV must be a

209

14 Development of a framework supporting trace expressions RV

minimal monitoring safe partition (De�nition 8). The other �elds allow limiting
the structure of the generated partition. In particular:

• constraints contains all the constraints on the agents involved inside
the partition, we can force two agents to be monitored together (alice
-><- carol), and we can also force two agents to be monitored separately
(barbara <-> dave).

• number_of_monitors sets the minimum and the maximum number of
monitors we want to use for the runtime veri�cation process (in this
case we are saying to RIVERtools that we want at least 2 and at most 4
monitors).

• roles_for_monitor sets the minimum and the maximum number of
roles monitored by a single monitor (in this case we are saying to RIVER-
tools that we want that each monitor veri�es at leat 3 roles and at most 5
roles).

Thanks to these three �elds we can customize the generation of the partition
that will be used for obtaining the runtime veri�cation of our MAS (Listing
14.6). These constraints depend on the speci�c scenario where RIVERtools is
used.

210

14 Development of a framework supporting trace expressions RV

Listing 14.6 . BookPurchase.java automatically generated by RIVERtools where
we decentralize the RV on a not speci�ed minimal monitoring safe
partition.

public c l a s s BookPurchase {
public s t a t i c void main (S t r i n g [] a r g s)

throws S t a l e P r o x y E x c e p t i o n , . . . , D e c e n t r a l i z e d P a r t i t i o n N o t F o u n d E x c e p t i o n {

/ ∗ C a l l a t t h e SWI−P r o l o g l i b r a r y ∗ /
J P L I n i t i a l i z e r . i n i t () ;

/ ∗ R e g i s t r a t i o n o f t h e t r a c e e x p r e s s i o n g e n e r a t e d by R I VER t o o l s ∗ /
T r a c e E x p r e s s i o n tExp = new T r a c e E x p r e s s i o n (" book_purchase . p l ") ;

/ ∗ I n i t i a l i z e JADE env i r onmen t ∗ /
j a d e . c o r e . Runtime runt ime = j a d e . c o r e . Runtime . i n s t a n c e () ;
P r o f i l e p r o f i l e = new P r o f i l e I m p l () ;
AgentConta iner c o n t a i n e r = runt ime . c r e a t e M a i n C o n t a i n e r (p r o f i l e) ;

/ ∗ C r e a t e t h e cus tom d e f i n e d a g e n t s
(d e f a u l t a r e i n s t a n c e s o f Agent c l a s s) ∗ /

L i s t < A g e n t C o n t r o l l e r > a g e n t s = new A r r a y L i s t < > () ;
Agent a l i c e = new Agent () ;
A g e n t C o n t r o l l e r a l i c e C = c o n t a i n e r . acceptNewAgent (" a l i c e " , a l i c e) ;
a g e n t s . add (a l i c e C) ;

/ / t h e same f o r barbara , c a r o l , dave , em i l y and f r ank
/ / . . .

/ ∗ C r e a t e and S e t t h e p a r t i t i o n ∗ /
L i s t < Condi t ion < S t r i n g >> c o n s t r a i n t s = new A r r a y L i s t < > () ;
c o n s t r a i n t s

. add (C o n d i t i o n s F a c t o r y . c r e a t e M u s t B e T o g e t h e r C o n d i t i o n (" a l i c e " , " c a r o l ")) ;
c o n s t r a i n t s

. add (C o n d i t i o n s F a c t o r y . c r e a t e M u s t B e S p l i t C o n d i t i o n (" b a r b a r a " , " dave ")) ;
c o n s t r a i n t s

. add (C o n d i t i o n s F a c t o r y . c r e a t e N u m b e r O f C o n s t r a i n t s C o n d i t i o n (2 , 4)) ;
c o n s t r a i n t s

. add (C o n d i t i o n s F a c t o r y . c r e a t e N u m b e r A g e n t s F o r C o n s t r a i n t C o n d i t i o n (2 , 5)) ;

/ ∗ Get t h e f i r s t mon i t o r i n g s a f e p a r t i t i o n a v a i l a b l e ∗ /
P a r t i t i o n < S t r i n g > p a r t i t i o n =

tExp . g e t F i r s t M o n i t o r i n g S a f e P a r t i t i o n (c o n s t r a i n t s) ;
/ ∗ I f no mon i t o r i n g s a f e p a r t i t i o n s a t i s f y i n g t h e c o n s t r a i n t s i s ∗ /
/ ∗ a v a i l a b l e , an e x c e p t i o n i s thrown ! ∗ /

/ ∗ D e c e n t r a l i z e d mon i t o r s ∗ /
for (Monitor m :

S n i f f e r M o n i t o r F a c t o r y
. c r e a t e D e c e n t r a l i z e d M o n i t o r s (tExp , p a r t i t i o n , a g e n t s)) {

c o n t a i n e r . acceptNewAgent (m. getMonitorName () , m) . s t a r t () ;
}

/ ∗ Channe l s c r e a t i o n (h e r e a r e s imu l a t e d) ∗ /
Channel . addChannel (new S imula tedChanne l (" e m a i l " , 0)) ;
Channel . addChannel (new S imula tedChanne l (" whatsapp " , 1)) ;

/ ∗ Run t h e a g e n t s ∗ /
for (Agent agen t : a g e n t s) {

agen t . s t a r t () ;
}

}
211

14 Development of a framework supporting trace expressions RV

14.3.3 Screenshots

In this section we report screenshots showing some of the typical errors
handled by RIVERtools.

the book-shop scenario in rivertools: In Figure 14.4 we have
de�ned inside RIVERtools the book-shop trace expression presented in Section
14.3.1. In this particular example, we have decided to decentralize the RV on a
speci�c partition (the most distributed one where all the agents are monitored
separately).

Figure 14.4 . The book-shop scenario presented in Section 14.3.1.

partition not valid: In Figure 14.5 we change the reliability of the
email channel from 1 to 0. Unfortunately, this does not allow us to distribute
the runtime veri�cation on each single role because we could lose information.
This is handled by RIVERtools that communicates to the programmer that
the current proposed partition is not valid (because two critical points are not
satis�ed, see De�nition 7).

212

14 Development of a framework supporting trace expressions RV

Figure 14.5 . Error: Partition not valid

roles existence: In Figure 14.6 we remove a role from the roles set.
Since this role is used inside the de�nition of two event types, RIVERtools
informs the programmer about an existence problem, since it is not able to
�nd the corresponding role inside the roles set.

Figure 14.6 . Error: After having removed the role “frank”, we have an existence
error.

213

14 Development of a framework supporting trace expressions RV

event types existence: In Figure 14.7 we remove an event type from
the types �eld. After that, RIVERtools �nds the corresponding use inside the
terms consisting the protocol body, and it communicates to the programmer
about the use of an event type unde�ned.

Figure 14.7 . Error: After having removed the event type buy, we have an existence
error.

14.4 Tutorial: How to use RIVERtools

Before ending this chapter with the �nal discussion, we report a brief tutorial
on how to use the RIVERtools Eclipse plugin.

what you are going to install.

• SWI-Prolog

• Eclipse (with Xtext plugin)

• RIVERtools Eclipse plugin

14.4.1 How to install SWI-Prolog

Installing SWI-Prolog is very easy:

• On Linux:
1. sudo apt-get install software-properties-common
2. sudo apt-add-repository ppa:swi-prolog/stable
3. sudo apt-get update

214

14 Development of a framework supporting trace expressions RV

4. sudo apt-get install swi-prolog

• On Windows
– Download either 32bit or 64bit from http://www.swi-prolog.org/

download/stable

• On MacOSX (using Homebrew12)
– brew install swi-prolog

14.4.2 How to install RIVERtools Eclipse plugin

1. Link for downloading last Eclipse IDE: https://www.eclipse.org/
downloads/packages/installer

2. Install Xtext plugin on Eclipse:
a) Choose Help -> Install New Software... from the menu bar and

Add...
b) Insert http://download.eclipse.org/modeling/tmf/xtext/

updates/composite/releases/. This site aggregates all the ne-
cessary and optional components and dependencies of Xtext.

c) Select the Xtext SDK from the category Xtext and complete the
wizard by clicking the Next button until you can click Finish.

d) After a quick download and a restart of Eclipse, Xtext is ready to
use.

3. Link for downloading RIVERtools plugin: https://github.com/

AngeloFerrando/website/raw/master/assets/rivertools/

plugin/rivertools.zip

4. Install RIVERtools plugin:
a) Choose Help -> Install New Software... from the menu bar and

Add...
b) Choose Archive...
c) Select the rivertools.zip �le downloaded previously.
d) Select TExp Feature from the list (“group items by category” must

be unchecked) and Next -> Finish.
e) After a quick download and a restart of Eclipse, the plugin is ready

to use.

14.4.3 How to use RIVERtools plugin (through an example)

1. Create a new project (a General project, not a Java Project) and call it
MyPingPongExample.

12http://mxcl.github.io/homebrew/

215

http://www.swi-prolog.org/download/stable
http://www.swi-prolog.org/download/stable
https://www.eclipse.org/downloads/packages/installer
https://www.eclipse.org/downloads/packages/installer
http://download.eclipse.org/modeling/tmf/xtext/updates/composite/releases/
http://download.eclipse.org/modeling/tmf/xtext/updates/composite/releases/
https://github.com/AngeloFerrando/website/raw/master/assets/rivertools/plugin/rivertools.zip
https://github.com/AngeloFerrando/website/raw/master/assets/rivertools/plugin/rivertools.zip
https://github.com/AngeloFerrando/website/raw/master/assets/rivertools/plugin/rivertools.zip
http://mxcl.github.io/homebrew/

14 Development of a framework supporting trace expressions RV

2. Inside the created project, create a new �le and call it pingpong.texp.

3. An Eclipse popup should ask you if you want to con�gure the project
with Xtext: say yes. If Eclipse does not ask you, right-click on the project
folder -> Con�gure -> Convert to Xtext project...

4. Now you can de�ne trace expressions with the full support of the RIVER-
tools plugin.

Now you are ready to de�ne inside RIVERtools a variation of the ping pong
example presented previously in this chapter. Speci�cally, in this example the
number of ping is equal to the number of pong.

in terac t ion_trace_express ion {
id : p ingpong
t a rge t : j a d e
ro les :

a l i c e $SenderAgent (’ bob ’ , ’ ping ’ , ’ 5 ’) $
bob$ R e c e i v e r A g e n t (’ a l i c e ’ , ’ pong ’ , ’ 5 ’) $

types :
p ing : { a l i c e => bob : p ing }
pong : { bob => a l i c e : pong }

body :
main <− pingpong ∗ main
pingpong <−

(p ing : (pingpong \ / epsi lon)
∗ pong : epsi lon)

}

Since Eclipse is using the RIVERtools plugin to analyze the trace expression,
all syntax and types errors are promptly indicated to the developer. As presen-
ted before in this chapter, we are interested in automatically generating the
code that will be used for verifying our multiagent system. When no errors
are found from RIVERtools, a new folder src-gen is created. Inside this folder
we can �nd the Java and Prolog code that have been automatically generated
through the compilation of the trace expression.

14.4.4 How to verify a MAS implemented in JADE

1. Link for downloading ping pong MAS example: https:

//github.com/AngeloFerrando/website/raw/master/assets/

rivertools/jadeconnector/example/pingpongmas.zip

2. Import the example into Eclipse:
a) File -> Import... -> Existing Projects into Workspace.
b) Select archive �le and select pingpongmas.zip downloaded previ-

ously, then �nish.

216

https://github.com/AngeloFerrando/website/raw/master/assets/rivertools/jadeconnector/example/pingpongmas.zip
https://github.com/AngeloFerrando/website/raw/master/assets/rivertools/jadeconnector/example/pingpongmas.zip
https://github.com/AngeloFerrando/website/raw/master/assets/rivertools/jadeconnector/example/pingpongmas.zip

14 Development of a framework supporting trace expressions RV

3. Inside the JADE project example you have two agents SenderAgent
and ReceiverAgent. Note that you have already indicated these classes
inside pingpong.texp.

4. Copy Pingpong.java from the MyPingPongExample project to this pro-
ject.

5. Run it. An exception will be thrown (“SWI_LIB environment variable
not de�ned”)

6. How to set the SWI_LIB environment variable
a) Right-click on Pingpong.java (the one inside MyPingPongMAS) ->

Run as -> Run Con�gurations...
b) Pass to the Environment tab and then New...
c) Set the name to SWI_LIB
d) Set the value to the path to the SWI-Prolog library. For instance, on

MacOSX is something like: /opt/local/lib/swipl-<version>/lib/x86_64-
darwin15.0.0/

7. The last thing you need to do before running the MAS is to change the
path to pingpong.pl (line 27 in Pingpong.java). You have to set it to the ab-
solute path corresponding to the �le generated in MyPingPongExample
project.

8. You are now ready to execute the MAS with the automatically generated
RV monitor.

9. Right-click on Pingpong.java (inside MyPingPongMAS) -> Run as ->
Java Application

The SenderAgent and ReceiverAgent are parametric. In particular, the
third parameter says how many messages the agent should send. In order to
better observe if the monitor is working, you can introduce a wrong behaviour
in the receiver agent. Instead of passing 5 as third argument to both the agents,
you pass 5 to alice and 6 to bob. After that, you will observe the monitor
printing an error message when the sixth pong will be observed.

RIVERtools is an open source project and is available on github. Link for clon-
ing the project: https://github.com/AngeloFerrando/trace_expression_
plugin_eclipse.git

14.5 Discussion

In this chapter we have presented RIVERtools, an IDE that can be used for the
integration of the trace expression formalism with any possible target system.
Thanks to the presence of connectors that handle all the domain dependent

217

https://github.com/AngeloFerrando/trace_expression_plugin_eclipse.git
https://github.com/AngeloFerrando/trace_expression_plugin_eclipse.git

14 Development of a framework supporting trace expressions RV

issues, we have showed that RIVERtools allows focusing on a more abstract
level leaving all technical details to the connector implementation.

We have presented the RIVERtools general structure and we have analyzed
its possible use through an example involving a book-shop scenario developed
as a MAS in JADE. Since the development of RIVERtools is very recent, we
have not yet stress-tested it on a real, complex case study. The results obtained
on the toy examples used for preliminary testing are promising and we plan
to identify some challenging scenario where we need to fully exploit the
expressive power of trace expressions. This will allow us to evaluate the
bene�ts of using RIVERtools, as well as its limitations, in a systematic way.

218

15 Case Study

“My doctor told me to stop having intimate dinners for four.
Unless there are three other people.”

- Orson Welles

Remote Patient Monitoring (RPM) enables physicians to perform
diagnosis and/or treatment remotely through sensors connected via
a communication network. Dependability and �exibility are recog-
nized as two key technological requirements for RPM take o�. In this
chapter we present a case study in the medical �eld where trace ex-
pressions are exploited for modeling protocols as complex and soph-
isticated as those used in healthcare. In this scenario, trace expres-
sions are used both for static veri�cation, following the approach
introduced in Chapter 12, and for driving the agent behavior, ac-
cording to the approach presented in (Ancona et al., 2015a). Support
to protocol-driven code generation may attain �exibility, fault tol-
erance and removal, and fault prevention in safety-critical systems,
as discussed in Section 5.1. In the same way as trace expressions
have been employed for protocol-driven behavior, they could have
been used – with minor modi�cations – for RV and DRV as well.
The choice of exploiting – in this scenario – trace expressions for
a goal di�erent from RV and DRV allowed us to demonstrate their
full potential, which goes far beyond the aspects dealt with in this
Thesis.

The contents of this chapter are published in
(Ancona, Ferrando, and Mascardi, 2018b; Ferrando, Ancona, and Mascardi,

2016)

219

15 Case Study

15.1 Introduction

Remote Patient Monitoring (RPM (Bayliss et al., 2003)) allows patients to use
mobile medical devices to perform routine tests at home and get an immediate
feedback from the device itself, and/or automatically send the test data to
healthcare professionals to get a feedback in real time.

Even if some studies raised doubts on the RPM e�ectiveness (Chaudhry
et al., 2010), others, such as the Whole System Demonstrator Programme
(WSD (UK Department of Health, 2011)), had more promising outcomes. WSD
involved 6191 patients who were monitored for 12 months between May 2008
and December 2009, across three sites in Newham, Kent and Cornwall. WSD
showed that RPM is associated with lower mortality and emergency admission
rates (Steventon et al., 2012). Positive results are also presented in (Kraai et al.,
2016) and (Yoo et al., 2014), among the others. The �rst study showed that
using RPM in patients with heart failure is safe and can reduce heart failure-
related visits to the outpatient clinic, keeping care accessible, even if the cost
is higher than that of conventional care. The second shows that a centralized
telecare management, coupled with automated symptom monitoring, appears
to be a cost e�ective intervention for managing pain and depression in cancer
patients. Other success stories are presented in (Gensini et al., 2017), along
with an analysis of the barriers to the RPM di�usion.

The take o� of RPM heavily depends on �nancial, organizational, legal,
and psychological aspects (Wallace et al., 2017; Wood, Boulanger, and Padwal,
2017): initial and maintenance costs should justify the adoption of RPM and
the changes it causes to the healthcare business model, legal issues should
be properly faced, patients and physicians should be willing to accept new
technologies in their daily work and lives.

From a technological point of view, dependability is a key factor for RPM
successful adoption. As observed in (Jezewski et al., 2016) w.r.t. medical cyber-
physical systems for telemonitoring pregnancy at home,

dependability has many dimensions like: reliability, security, safety,
privacy, and trust that must be resolved and assured through care-
ful design veri�cation, validation and �nal certi�cation processes.
[...] Dependable cyber-physical systems can be achieved if appropri-
ate veri�cation, validation and certi�cation processes are conducted
[...].

This position is consistent with that discussed in (Winiko�, 2017), according
to which trust is one of the main requirements in Human-Computer and
Human-MAS interaction and it can be made stronger by a-priori veri�cation.

Besides dependability, another enabling factor for RPM is �exibility, meant
as “the ability to be easily modi�ed”. In order for a software system to be easy
and cheap to maintain, this ability should require limited or no intervention
from human designers and developers. In other words, the system should
be able to autonomously and dynamically adapt its functioning to changing
environment conditions. While this is important for many application domains,

220

15 Case Study

it becomes of paramount importance in a RPM setting as discussed in (Kucher
and Weyns, 2013).

One way to achieve �exibility is adopting a multiagent approach where
agents are capable of self-adaptation, whereas dependability can be attained
in di�erent ways, including preventing and removing faults during the system
development and use by exploiting software engineering tools and methods,
testing, and formal veri�cation techniques (Avizienis et al., 2004, Sec. 5). If we
merge the two approaches, RPM systems can be made �exible and dependable
by designing and implementing them as self-adaptive MAS where agents
development is supported by IDEs, and agents are driven by speci�cations that
can undergo testing, static analysis including model checking, and runtime
monitoring.

In this section we �rst provide a gentle introduction to the practical use
of trace expressions for RPM via examples taken from (Bottrighi et al., 2010).
After that, we describe a complex protocol for managing hypoglycemia in
the newborns which extends the work presented in (Ferrando, Ancona, and
Mascardi, 2016) by exploiting parameters in the model.

15.1.1 A Jason Framework Supporting Agents Driven by Parametric Trace
Expressions

According to (Ancona et al., 2015a), in order to support a protocol-driven
approach to agent programming a generate function for identifying the allowed
actions for moving from the current state of the protocol to the next one must
be provided. Generate is built on top of the next function implementing the
δ transition relation. Each agent is characterized by a select policy to select
the action to perform among the allowed ones, and a react policy to react to
perceived events. Two more policies state how to manage unexpected events
and which cleanup actions to perform before switching from the currently
executing protocol to the new one. Self-adaptation is performed by means of a
protocol switch triggered by the reception of “switch requests” sent by “super-
agents” or “controllers”. Agents can request protocol switches to themselves.
Agents are also able to project a global description of a protocol involving
many agents onto a local version by keeping only the events where they are
involved in.

The protocol-driven interpreter implements a cycle where it �rst checks
if there is a protocol switch request and if it can be managed in the current
state of the protocol. If yes, and if the protocol switch sender is a system
controller, a protocol switch is performed after some cleanup operations. If no
protocol switch is foreseen in that moment, the protocol-compliant actions are
generated and one of them is selected for being executed. The environment
representation and knowledge base are updated accordingly and the protocol
moves to the next state. In case the perceived event was not foreseen by the
protocol, it is managed according to the unexpected policy.

In the framework presented in (Ancona et al., 2015a) and extended in (Fer-
rando, Ancona, and Mascardi, 2016) to cope with generic events, the protocol-

221

15 Case Study

driven engine was implemented in “Jason Prolog”, namely the Prolog version
natively supported by Jason. W.r.t. SWI-Prolog, the “Jason Prolog” shows some
syntactic di�erences which, even if minor, have to be carefully considered
when modeling the protocol.

The introduction of parameters into trace expression required to heavily
exploit SWI-Prolog technical features for moving from the representation of a
variable as a logical variable in the protocol, to an internal explicit representa-
tion whose associated values could be manipulated by the interpreter. In other
words, the variable uni�cation mechanism which is normally hidden to the
Prolog programmer had to be made explicit in order to implement the match
function.

Porting this complex management of logical variables into “Jason Prolog”
was not feasible, and the Jason framework for self-adaptive agents driven by
parametric protocols was re-implemented by allowing Jason to communicate
with SWI-Prolog in order to use operations on trace expressions like match,
next, generate.

Making Jason and SWI-Prolog communicate raised some technical details.
If we only had to verify that the Jason MAS behaves according to some given
protocol, and both the protocol and the veri�cation engine were implemented
in SWI-Prolog, the problem would be simpler. In fact, each time an event is
observed, Jason should pass the observed event to the SWI-Prolog “veri�cation
module” and ask to check if the event is consistent with the current state of
the protocol. The SWI-Prolog module should return the answer computed by
next, which is either true or false.

In the protocol-driven setting, the answer generated by SWI-Prolog is the
result computed by generate: it represents the set of all possible events that
the protocol-driven agent can choose. While translating true/false from SWI-
Prolog to Jason is easy, translating a set of events is more challenging from a
technical point of view.

Making Jason and SWI-Prolog communicate required to develop some ad-
hoc Prolog code both on the Jason side (300 lines of Java code), and on the
SWI-Prolog side (90 LOC).

15.1.2 Modeling Clinical Guidelines

Clinical guidelines (GLs) specify the best way to take care for people with
speci�c pathological conditions. The identi�cation and standardization of GLs
is fundamental for making RPM possible, as discussed for example in (Bonnell
and Mittal, 2013) w.r.t. patients with cardiac implantable electronic devices. In
(Bottrighi et al., 2010) more than twenty GLs have been modeled using LTL
and then veri�ed by integrating a computerized GL management system with
a model-checker.

In the sequel we provide examples of GLs analyzed in (Bottrighi et al., 2010)
modeled using trace expressions. ∀run .(run ∈ nτo) identi�es a property that
must hold for all the traces in nτo and corresponds to an LTL property charac-
terized by an outer “Globally” operator, whereas ∃run .(run ∈ nτo) identi�es a

222

15 Case Study

property that must hold for at least one event trace in nτo and corresponds to
an LTL property characterized by an outer “Eventually” operator. The negation
¬ is not part of the trace expressions syntax; it is a shortcut for identifying all
the events that do not match a given event type. More formally, given E the
�xed universe of modelled events and ϑ an event type (hence, a set of events),
¬ϑ = E \ ϑ .

The description, comment and relevance of each example are quoted from
(Bottrighi et al., 2010). The speci�cation of the other GLs presented in that
paper can be found in Appendix A.

Example of structural property.
Verify that neurological de�cit is always present (ischemic stroke GL).

∀run .(run ∈ nτo)
τ = (neuroloдical_de f icit :τ)∨ϵ

Comment: The property is true if neurological de�cit is always present, in all
the states of all possible runs.
Relevance: The ischemic stroke GL is not applicable to a patient with no neur-
ological de�cit.
Trace expression representation: if the event type neurological_de�cit appearing
in τ is the set containing only one event nd , then the semantics of τ is the set
of traces {ϵ,nd,nd nd,nd nd nd, ...,ndω }. The property that for each trace the
neurological de�cit is always present, is correctly modelled by τ .

Example of medical validity property.
Verify that whenever hepatic encephalopathy is present, diuretics are not
administered.

∀run .(run ∈ nτo)
τ = (liver_encephalopathy:τ1)∨(¬liver_encephalopathy:τ)∨ϵ

τ1 = (¬diuretics_administration:τ1)∨ϵ
Comment: Diuretics are contraindicated in hepatic encephalopathy.
Relevance: Diuretics can worsen the liver perfusion and precipitate the enceph-
alopathy or worsen its severity.
Trace expression representation: if the event type liver_encephalopathy con-
tains le only, the event type diuretics_administration contains da only, and
there are no other events modelled in the system, then

nτo = {ϵ,da,da da, ...,daω , le,da le,da da le, ...,da ... da le, le le,da le le, ...}
. The property that that for each trace, if le belongs to the trace, than it is never
followed by da, is correctly modelled by τ .

Example of contextualization property.
Verify that there is at least one run in which the Computed Tomography (CT)
scanner is not used (ischemic stroke GL).

∃run .(run ∈ nτo)

223

15 Case Study

τ = (¬CTscan:τ)∨(CTscan:ϵ)∨ϵ
Comment: If this condition holds, the GL (or, at least a part of it) can be applied
also in hospitals where the CT scanner is not available.
Relevance: The CT scanner is very important in some cases but not always
accessible.
Trace expression representation: let us suppose that event typeCTscan contains
only the event ct , and the other events are identi�ed by oth in the event trace.
nτo = {ϵ,oth,oth oth, ...,othω , ct ,oth ct ,oth oth ct ,oth oth oth ct , ...,oth ... oth ct}.
The property that there exists a trace where no CT scan is needed, is correctly
modelled by τ . To be precise, there are in�nite traces satisfying the property.

15.1.3 Modeling Management of Hypoglycemia in the Newborns

In this section we brie�y recall the protocols for managing hypoglycemia in
the newborns introduced in (Ferrando, Ancona, and Mascardi, 2016) and we
present their parametric version.

The human beings involved in this case study are doctors and newborns
su�ering from hypoglycemia. Each of them is associated with a protocol-
driven agent. Each baby should be equipped with sensors able to change the
protocol-driven agent knowledge base after perception of sensory input such
as temperature, heartbeat, pressure, O2 saturation, movement, and so on.

Hypoglycemia management does not require a constant presence of a doctor
but needs an ongoing monitoring of some vital parameters. The protocol-driven
agent associated with newborns might need to communicate something to the
patient’s parents by printing some message onto a screen positioned near to
the newborn. Parents can follow the monitoring process and the intervention
instructions like, for example, the request to inject a dose of glucose solution.

The doctor’s agent is driven by a single protocol characterized by three
mutually exclusive situations:

• Ok situation (Ok sub-protocol): if the doctor agent receives a message
reporting that the glucose level in the blood of its patient is ok, then
things are going on in the right way: the agent goes on monitoring;

• Severe situation (SevereProblem sub-protocol): if the doctor agent receives
a message reporting that the glucose level in the blood of its patient is too
low, then it sends a protocol switch request to the patient and continues
to monitor;

• Possibly critical situation (SwitchedToSeverity1 sub-protocol): if the doctor
agent receives a message reporting that the patient has switched its
protocol to severity1 two thing may happen:
– if the agent either receives a message reporting that the patient has

tremors or he/she is irritable, then it is up to the doctor’s agent to
decide whether asking to the patient to continue the monitoring
activity, or moving to a critical situation state (switch to severity2
protocol);

224

15 Case Study

– if the doctor’s agent receives a message from the patient (or from
his parents) reporting an intervention request, then the agent com-
municates this request to the “real” doctor using the screen.

In both cases, the agent can move to the “standard” monitoring state
modeled by the trace expression associated with the DoctorPatientPro-
tocol.

The patients’ agents are driven, in each time instant, by one of the three
protocols below, each representing the “dual” of the corresponding doctor’s
protocol:

• standard protocol, which models the situation where the newborn has no
symptoms of the disease;

• severity 1 protocol, associated with the lowest severity level of the disease;

• severity 2 protocol, associated with the highest severity level of the disease.

Parametric extensions

Doctor protocol. We added two parameters to the Doctor protocol: Hours
and Threshold. They are used to dynamically represent the baby’s hours of
life and the minimum glucose level respectively, and allow us to introduce
parametricity via a simple example.

The Hours variable is used to track of the baby’s hours of life. With respect
to the non-parametric protocol version, in the parametric version we can also
model time. In this way, during the monitoring, the doctor can decide which is
the correct glucose threshold, modeled by the Threshold variable, on the basis
of the current baby’s hours of life.

The parametric protocol has one more branch in the main trace expression
T1. This branch is represented by the trace expression Age, used to keep track of
the information related to the baby’s hours of life. Thanks to the new construct
var, we can instantiate the Hours variable which will be set at runtime to the
proper current value passed as content of the msg_age message. After that,
Hours is used inside the msg_threshold_send event type in order to decide the
correct threshold which has to be communicated to the patient. The other
parts of the protocol do not change.

Note that the Threshold variable does not appear in the Doctor protocol be-
cause its value is used only by the Patient’s Protocol. In particular, the threshold
value is set and passed to the Patient’s Protocol in the msg_threshold_send
event type.

We remind that the agent associated with the doctor has the power to request
a protocol switch to the patient’s agent modeled by the switch_request(Sender,
Receiver, NewProtocolIdenti�er) event type.

trace_expression(hypoglycemia_doctor_protocol, T) :-
Ok = msg_ok_glucose(var(1), var(2)):OkOrProblem,
Problem = msg_too_low_glucose(var(1), var(2)):SwitchSeverity2,

225

15 Case Study

OkOrProblem = (Ok \/ Problem),
SwitchSeverity2 = (switch_severity2(var(2), var(1)):T1) \/

(msg_continue_monitor(var(2), var(1)):T1),
Tremors = msg_tremors(var(1), var(2)):SwitchSeverity2,
Irritability = msg_irritability(var(1), var(2)):SwitchSeverity2,
InterventionRequest = intervention_request(var(1), var(2)):

print_intervention_request(var(1), var(3)):epsilon,
MsgSeverity1 = msg_severity1(var(1), var(2)):epsilon,
Age = var(Hours, msg_age(var(1), var(2), Hours):

msg_threshold_send(var(2), var(1), Hours):Age),
T1 = (Age | ((OkOrProblem |

(MsgSeverity1 * (Tremors \/ Irritability)))
| InterventionRequest)),

T = finite_composition(|, T1, [m(var(1),[]),m(var(2),[]),m(var(3),[])]).

Patient standard protocol. Also this protocol has been extended by in-
troducing the construct var to manage the hours of life and the glucose level
threshold. In particular, by introducing the trace expression Age where we set
the Hours variable, it is possible to communicate the age to the Doctor and to
set the Threshold variable respectively:

• The event which matches the my_age event type is a perception contain-
ing the information about the baby’s hours of life. In this way, when this
event type is matched, the variable Hours is set to the correct value.

• After that, a message to the Doctor containing the Hours variable, �xed
to the proper value, is sent.

• Finally, a message from the Doctor is received (msg_threshold_recv event
type) setting the Threshold variable to the correct value decided by the
doctor.

Once the Age part is consumed, the protocol continues as in the non-
parametric case. The only di�erence is that we can use the Threshold variable
to in�uence the ok_glucose and too_low_glucose event types. Indeed, since the
glucose level used as threshold in the protocol dynamic, we can use it when
we observe the events taken by sensors, to decide if the glucose level is under
control or not.

trace_expression(hypoglycemia_protocol_standard, T) :-
Ok = ok_glucose(var(1), Threshold):

msg_ok_glucose(var(1), var(2)):Age,
Problem = too_low_glucose(var(1), Threshold):

msg_too_low_glucose(var(1), var(2)):
((msg_continue_monitor(var(2), var(1)):Age) \/
(switch_severity2(var(2), var(1)):epsilon)),

OkOrProblem = (Ok \/ Problem),
T1 = (Age |

(tremors(var(1)):epsilon) |
(irritability(var(1)):epsilon) |

226

15 Case Study

(convulsions(var(1)):epsilon) |
(apnea(var(1)):epsilon) |
(irregular_breathing(var(1)):epsilon)),

Age = var(Hours, my_age(var(1), Hours):
msg_age(var(1), var(2), Hours):
var(Threshold, msg_threshold_recv(var(2), var(1), Threshold):
OkOrProblem)),

T = finite_composition(|, T1, [m(var(1), []), m(var(2), [])]).

Severity 1 and Severity 2 protocols. Also in these protocols, two variables
Hours and Threshold have been added and used in the same way as for the
patient standard protocol.

trace_expression(hypoglycemia_protocol_severity1, T) :-
Ok = ok_glucose(var(1), Threshold):

msg_ok_glucose(var(1), var(2)):Age,
Problem = too_low_glucose(var(1), Threshold):

msg_too_low_glucose(var(1), var(2)):
((switch_severity2(var(2), var(1)):epsilon) \/
(msg_continue_monitor(var(2), var(1)):Age)),

Msg = msg_severity1(var(1), var(2)):epsilon,
Tremors = severe_tremors(var(1)):msg_tremors(var(1), var(2)):

((msg_continue_monitor(var(2), var(1)):Tremors) \/
(switch_severity2(var(2), var(1)):epsilon)),

Irritability = severe_irritability(var(1)):msg_irritability(var(1), var(2)):
((msg_continue_monitor(var(2), var(1)):Age) \/
(switch_severity2(var(2), var(1)):epsilon)),

OkOrProblem = (Ok \/ Problem),
T1 = Msg * (Age | Tremors | Irritability |

(convulsions(var(1)):epsilon) |
(apnea(var(1)):epsilon) |
(irregular_breathing(var(1)):epsilon)),

Age = var(Hours, my_age(var(1), Hours):
msg_age(var(1), var(2), Hours):
var(Threshold,
msg_threshold_recv(var(2), var(1), Threshold):OkOrProblem)),

T = finite_composition(|, T1, [m(var(1), []), m(var(2), [])]).

trace_expression(hypoglycemia_protocol_severity2, T) :-
Ok = ok_glucose(var(1), Threshold):

msg_ok_glucose(var(1), var(2)):Age,
Problem = too_low_glucose(var(1), Threshold):

intervention_request(var(1), var(2)):epsilon,
T1 = intravenous_inj_glucose_sol(var(1), var(3), 10):

(Ok \/ Problem),
Age = var(Hours, my_age(var(1), Hours):

msg_age(var(1), var(2), Hours):
var(Threshold, msg_threshold_recv(var(2), var(1), Threshold):T1)),

T = finite_composition(|, Age, [m(var(1), []), m(var(2), []), m(var(3), [])]).

227

15 Case Study

15.2 Experiments

We carried out two experiments aimed at showing trace expressions support
to a priori veri�cation and self-adaptation. A third experiment measured the
implementation performances.

15.2.1 A priori veri�cation (attains fault tolerance and removal)

We exploited the model checking mechanism presented in Chapter 12 for
verifying that the clinical guidelines described in Section 15.1.2 and in Appendix
A respect the corresponding LTL properties described in (Bottrighi et al., 2010).

To this aim, the trace expressions were translated into Büchi automata.
There was no need to rewrite them, as the trace expressions presented in
Section 15.1.2 have the same expressive power than LTL and Büchi automata
and no over-approximation is required. Then, SPIN was used to perform the
model checking stage.

Following this approach we were able to check, for example, that the trace
expression modeling the clinical guideline “verify that neurological de�cit
is always present” veri�es the LTL property 〈∀run,�(neuroloдical de�cit =
present)〉.

This check was done for all the guidelines presented in this chapter. The res-
ult is that all the trace expressionsmodelingmedical guidelines presen-
ted in this chapter satisfy the corresponding LTL properties presented
in (Bottrighi et al., 2010).

This result shows the suitability of trace expressions to model general
behavioral patterns and verify that the model respects some mandatory, safety-
critical conditions before using it to drive the behavior of agents in a real
system.

15.2.2 Self-adaptation (attains �exibility and fault tolerance and removal)

The parametric trace expressions presented in Section 15.1.3 were used to drive
the behavior of agents in a Jason MAS. Sensory input was simulated. In this
suite of functional tests, we run 20 experiments with a maximum of 10 patients,
1 doctor, 11 screens that agents use for interacting with their human users (one
for each patient and one for the doctor), 10 sensors.
For each test we manually checked the conversation among agents,

in particularw.r.t. the occurrence of protocol switch (themeans provided
by trace expressions to support self-adaptation), and all the conversa-
tionswere consistentwith thehypoglycemia in the newborns protocol.
Since a MAS involving protocol-driven agents is safe by construction (Ancona
et al., 2015a), as agents are forced to behave according to the given protocol,
consistency is the only result we could obtain: functional tests just con-
�rmed this fact.

228

15 Case Study

Below, we report one selected conversation which is easy to follow, to
exemplify the interface of the Jason framework presented in Section 15.1.1 and
the manual check process.

Figure 15.1 shows a fragment of an interaction among agents patient1, pa-
tient2 and doctor1: after patient1 perceives the event my_age(1) (meaning that
the baby patient1 is in charge for, is 1 hour old), it sends the corresponding
message msg_age(1) to doctor1. The same happens with patient2, whose baby
is 2 hours old. Agent doctor1 receives both messages and moves to a new state,
where this information is taken into account.

Figure 15 . 1 . Agents patient1 and patient2 sending the hours of life to agent doctor1.

Given the hours of life, doctor1 chooses as glucose level threshold the value
28 for the baby monitored by patient1 and sends this value to it (Figure 15.2).

Figure 15 .2 . Agent doctor1 sending the threshold to patient1.

Figure 15.3 shows patient1 perceiving the event plasma_level_glucose(27).
Since the glucose level is less than the threshold set by doctor1, the event
plasma_level_glucose(27) matches the event type too_low_glucose. Consequently,
a message telling that the perceived glucose level is too low is sent to doctor1.

When agent doctor1 receives the message about the low glucose level, it sends
a protocol switch request to patient1. When patient1 receives this message, it
switches to the severity 2 protocol and starts behaving according to it (Figure
15.4).

229

15 Case Study

Figure 15 .3 . Agent patient1 perceiving a low level of glucose.

Figure 15 .4 . Agent doctor1 asking for a protocol switch to patient1.

Figure 15.5 shows that, as speci�ed by the severity 2 protocol, agent patient1
sends a message to its screen in order to display the request to inject a 10%
glucose solution, informing in this way the baby’s parents.

Figure 15 .5 . Agent patient1 displaying the need of an intravenous injection.

Finally, since the baby glucose level is still decreasing, agent patient1 sends a
request to agent doctor1 to inform its user, namely the real doctor, to intervene.
When agent doctor1 receives this message, it displays it on its screen to involve
the doctor in the decision process (Figure 15.6).

15.2.3 Performances

The last suite of experiments was devoted to assess the performances of the
Jason framework presented in Section 15.1.1. We run 20 tests for each of the
following con�gurations, identi�ed by letters from a to i in Table 15.1: one
doctor with ten patients, one doctor with �fty patients, one doctor with one
hundred patients, two doctors with ten (resp. �fty, one hundred) patients each,
and �ve doctors with ten (resp. �fty, one hundred) patients each. Age and
dynamics of the situation evolution of patients were randomly generated for
each run.

The number of tests we run was 180, with a number of agents – including
sensors – ranging from 22 and 1010. For each con�guration we computed the
average number of messages sent by each doctor and the average number of

230

15 Case Study

Figure 15 .6 . Agent patient1 asking doctor1 to intervene.

messages sent by each patient in 5, 20 and 100 seconds to identify degradations
in the communication performances.

We could not measure the system performances via experiments like “how
many seconds are needed by the system to reach some given con�guration
or to terminate” because the protocol could go on forever (for example, if the
patient is stable) and there is no �nal con�guration to reach, as di�erent runs
can lead to di�erent �nal states.

Conf.
Doct.
(D)

Pat. per
doct. (P)

Tot.
ags.

Sent
in 5s
(doct.)

Sent
in 5s
(pat.)

Sent
in 20s
(doct.)

Sent
in 20s
(pat.)

Sent
in
100s
(doct.)

Sent
in
100s
(pat.)

a 1 10 22 4.5 1 16 3.5 88 14.8
b 1 50 102 5.5 0.7 18 1.9 100 7.2
c 1 100 202 4 0.4 18 1.7 80.5 7
d 2 10 44 4 1.4 17 3.2 81.5 17
e 2 50 104 4.8 0.6 22 2.1 102.2 9.5
f 2 100 404 2 0.35 9 2 42.5 6.8
g 5 10 110 4.7 1 17 3.9 89.3 18.7
h 5 50 510 0.6 0.36 2 1.3 12 5.8
i 5 100 1010 0.6 0.15 2.2 0.75 10 3.2

Table 15 . 1 . Experiments

Table 15.1 shows that, for a given number of doctors D and a given amount
of timeT , the number of messages sent by each patient inT decreases with the
increase of the patients’ number. Doctors tend to maintain a more constant
rate of sent messages as long as the total number of agents is 200 or less
(con�gurations a, b, c, d, e, g). When the total amount of agents is 400 or more
(con�gurations f, h, i), the average number of messages that doctors send in a
given amount of time T clearly decreases. This result is the expected one and
can be easily explained: protocol-driven agents run on the same machine and
the more the agents, the less frequent each agent is scheduled and can send
messages.

Although having one doctor agent allowed to send only 10 messages every
20 seconds (con�guration i) may raise serious problems when quick responses
are needed, we should consider that the stress-test we performed is not realistic
for two reasons:

231

15 Case Study

1. in a real setting, we expect that no doctor is in charge of a high number of
newborn babies that require constant remote monitoring: con�gurations
c, f, and i are hopefully unrealistic;

2. if a real protocol-driven MAS were built following the approach dis-
cussed in this chapter, each doctor’s agent would run on the actual
doctor’s machine, and the same would happen for each patient’s agent:
with one doctor and �fty patients, performances of con�guration b
represent a lowerbound for the actual performances.

Given the above considerations, we believe that a system where a doctor
agent can send about one message every second (one message every
P seconds to each of its P patients) is compliant with a RPM setting
where P is low and intervention in case of need is made by human
beings, like the hypoglicemia in the newborns one.

15.3 Discussion

In this chapter we presented a challenging case study in the RPM �eld. We
showed how trace expressions are a suitable formalism for representing med-
ical guidelines, and how their self-adaptivity can be exploited in this scenarios.

The ability of trace expressions to self-adapt (hence attaining fault tolerance
and removal) has been demonstrated in Section 15.1.3 by the case study design
and implementation (protocol switch is triggered by the e�ect of monitoring
the environment, according to the perspective on self-adaptivenness proposed
in Weyns, 2018) and in Section 15.2.2 where we showed that adaptations take
place as expected. For example, we have correctly observed that “when agent
doctor1 receives the message about the low glucose level, it sends a protocol switch
request to patient1.When patient1 receives thismessage, it switches to the severity
2 protocol and starts behaving according to it.”

The ability of trace expressions to undergo static veri�cation (hence attain-
ing fault prevention) is demonstrated in Section 15.1.2 and in Appendix A by
the medical guidelines design, and in Section 15.2.1 by their veri�cation.

232

Part VII

Discussion

In this part we compare the trace expression formalism with the formalisms
presented in the state of the art at the beginning of the thesis. Finally, we
conclude the work with the �nal comments, conclusions and future work.

233

16 Comparison

16.1 Trace Expressions VS State of the art

Trace expressions have been continuously re�ned and consolidated during the
last 5 years (Master’s degree and Ph.D. program) (Ancona, Barbieri, and Mas-
cardi, 2013; Ancona, Ferrando, and Mascardi, 2016; Ancona et al., 2014, 2015b,
2016; Briola, Mascardi, and Ancona, 2014a,b; Mascardi, Briola, and Ancona,
2013). Their most recent extensions involve the introduction of parameters
(Chapter 6) and probabilities (Chapter 7), the safe decentralization of the MAS
monitoring process (Chapter 9 and 10), and the implementation of the RIVER-
tools IDE (Chapter 14).

In the following analysis, we take the same ten features into account as in
the state of the art chapter (Chapter 5):
– Modelled issues: interaction protocols from a global perspective but also
more general behavioural patterns involving many parties.
– Modeling approach: parametric trace expressions are built on top of the
“event” and “event type” notions; an event is something which takes place in
the environment and which can be either generated or observed by the agents.
It may be a communicative event like in (Ancona et al., 2015a) or any other
event like the perception of some value from a sensor, the observation of some
phenomenon in the environment, the expiration of a deadline (Ancona et al.,
2015b). Trace expressions can be combined using concatenation, intersection,
union, and shu�e operators reaching the expressive power of non context-free
grammars, higher than that of FSM which can recognize regular grammars.
– Integrated development environment: a prototype tool to design trace
expressions and perform static checks and operations on them is presented in
Chapter 14.
– Parametricity: in Chapter 6 we showed how trace expressions are extended
with parameters by introducing variables that are substituted with data values
at runtime, when events are matched during monitoring. This extension ad-
vances previous proposals (Ferrando, 2015; Mascardi and Ancona, 2013) and
has also been adopted outside a MAS setting (Ancona et al., 2017a).
– Probability: in Chapter 7 we showed how to extend event types with prob-
abilities in order to handle the absence of information during the runtime
veri�cation process.
– Testing/simulation: given a trace expression, all the traces of a given length
compliant with that expression can be automatically generated, for further
manual or automatic testing. Simulation is not supported.
– A priori veri�cation: in Chapter 12, the translation of a trace expression
into a Büchi Automaton in order to realize an automata-based model checking

234

16 Comparison

is presented. Since trace expressions are more expressive than Linear Temporal
Logic (LTL (Pnueli, 1977)), the translation generates an over-approximation of
the trace expression leading to a sound procedure to verify LTL properties.
– Runtime veri�cation: trace expressions and the previous notations they
are based upon, have been conceived and implemented with runtime veri�ca-
tion in mind. The veri�cation mechanism is supported by both Jason (Bordini,
Hübner, and Wooldridge, 2007) and JADE (Bellifemine, Caire, and Greenwood,
2007).
– Self-adaptation: in (Ancona et al., 2015a) a framework for top-down cent-
ralized self-adaptive MAS is presented; adaptive agents are protocol-driven
and adaptation consists in runtime protocol switch.
– Protocol enactability and protocol-driven code generation: a working
Jason interpreter for protocol-driven agents is presented in (Ancona et al.,
2015a). No skeletal Jason code is generated: rather, thanks to the implemented
interpreter plus some strategies that must be provided by the developer, the
behaviour of the agents is entirely driven by the protocol itself. The problem of
partial distribution of the protocol veri�cation mechanism even when “stand-
ard” enactability conditions do not hold is faced in Chapter 9.
– Case studies and applications: the formalization of the FYPA protocol
(Briola and Mascardi, 2011) using attribute global types, a predecessor notation
of trace expressions, is presented in (Mascardi, Briola, and Ancona, 2013). FYPA
(Find Your Path, Agent!) is a MAS implemented in JADE and used by Ansaldo
STS for allocating platforms and tracks to trains inside Italian stations.

16.1.1 Comparison

Table 16.1 summarizes the analysis carried out in Chapter 5 and this chapter. As
far as the modelled issues are concerned, GAIP stands for “agent interaction
protocols from a global perspective” and GAIP+ denotes the possibility to model
other aspects besides GAIPs. For the other issues apart from applications,
"means that an implemented support to the feature is provided whereas (")
means that the feature is not supported but could be with limited e�ort (for
example, algorithms have already been designed or code for similar purposes
exist and should just be adapted). Finally, as far as applications are concerned,
"means that applications have been developed for external stakeholders such
as enterprises, public administrations, research institutes, and that someone
di�erent from the authors is using them. By (") we mean that case studies
and/or applications have been developed, maybe inspired by real problems,
but none apart from the authors is using the approach.

Table 16.1 shows that the four approaches analyzed in Chapter 5 and trace
expressions support most of the features we have considered.

Commitment machines, self-adaptive approaches, and parametric trace ex-
pressions are almost equivalent w.r.t. the analyzed features, each one surpass-
ing the others under some respect and each suitable for the design, development
and veri�cation of a software system.

As far as trace expressions are concerned, they are currently also used

235

16 Comparison

BSPL CM HAPN Self-adaptive Trace expressions
First paper published in 2011 2001 2017 2004 2012
Modelled issues GAIP GAIP GAIP GAIP+ GAIP+
IDE " " " "

Parametricity " " " " "

Probability (") " " "

Testing/simulation (") " " " (")
A priori veri�cation " " (") " "

Runtime verication " " (") " "

Self-adaptation " " "

Enactment/code generation " (") "

Applications (") " (") " (")

Table 16 .1 . Comparison

for RV of object-oriented languages, s.t. Java (Ancona et al., 2017a) and of
IoT architectures, speci�cally of Node-RED1 (Leotta et al., 2018) and Node.js
(Ancona et al., 2017b) where trace expressions have been successfully exploited
for specifying the correct usage of API functions and a prototype is presented.

1https://nodered.org

236

https://nodered.org

17 Conclusions and Future Work

“Don’t cry because it’s over,
smile because it happened.”

- Dr. Seuss

In this thesis, we presented all the work which has been done on
runtime and static veri�cation of multiagent systems during the 3
years of the Ph.D. program. We presented the trace expression form-
alism (Chapter 4) with its parametric and probabilistic extensions
(Chapter 6 and Chapter 7) and we showed di�erent scenarios of pos-
sible use for each one of them. In this Chapter we will summarize
the main contributions of this work, discuss the impact that it may
have in di�erent research communities, and outline its future dir-
ections.

237

17 Conclusions and Future Work

17.1 Conclusions

In this thesis, we mainly focused our attention on the decentralized aspects
concerning the runtime veri�cation of distributed intelligent systems (such as
MAS); in particular, the veri�cation of interaction protocols (Chapter 8). We
showed how these scenarios present peculiar issues which must be seriously
addressed, such as the bottleneck problem which is common in the MAS �eld
when the number of interacting agents increases. Decentralizing the runtime
veri�cation using multiple monitors is a �ne and scalable solution to this
problem (Chapter 9).

Since reliability is a key aspect for distributed arti�cial systems, we also
dedicated part of the thesis to studying a probabilistic approach for verifying
interaction protocols and showed how to e�ciently exploit it in the MAS
scenario (Chapter 10), also taking care of the decentralized aspects in the
process.

During the 3 years of Ph.D. we have studied and experimented the veri�c-
ation of MAS not only at runtime, but also at static time. In Chapter 12 we
presented our approach for applying formal veri�cation, e.g. model checking,
directly on top of trace expression speci�cations. In the thesis we showed
how this kind of approach allowed us to make the resulting runtime veri�ca-
tion process more reliable. We also experimented the advantages of bringing
runtime veri�cation inside model checking (Chapter 13), in particular inside
a famous model checker framework for MAS, namely MCAPL. The integra-
tion of our speci�cations into this engine has brought advantages – showed
through experimental results – such as the reduction of the size of the model
used inside MCAPL, with a consequent smaller number of states to be analyzed
(increasing the performances of the static veri�cation process).

The contributions of the Ph.D. more concerned with engineering and prac-
tical aspects are presented at the end of the thesis (Chapter 14) and show the
tool RIVERtools which has been developed for supporting the speci�cation
of trace expressions, alongside syntactic and (some) semantic controls, and
tools for both centralized and decentralized runtime veri�cation. The usage of
RIVERtools has been shown in connection with the JADE platform although
it has been designed to be – in principle – connected to any other framework.
Finally, we have presented a case study (Chapter 15) where trace expressions
demonstrate all their potential for representing complex protocols, statically
checking the properties of these protocols, and creating agents driven by them.

Trace expressions and RV are fascinating and through the works presented
in this thesis we showed many possible uses and studied di�erent theoretical
and practical aspects. Other colleagues are also planning to extend and use the
trace expression formalism. More speci�cally, Ancona, Franceschini et al. are
also considering a more radical extension of the formalism in order to make
it more compact, expressive and reusable. In the last years, they have been
focusing more on the use of trace expressions in the IoT �eld (Ancona et al.,
2017b; Leotta et al., 2018): they are planning to use them to generate more
invasive monitors which are able to intercept and �lter events at the edge of

238

17 Conclusions and Future Work

the heterogeneous IoT system. Many applications, such as machine learning
ones, may gain from this proactive approach where the monitor could help
in having a more reliable training phase, �ltering the events that are out of a
speci�c range or that do not respect some time constraints.

In the next sections we are going to present expected and unexpected
future directions of the thesis.

17.2 Expected Future Directions

In the following paragraphs we regrouped the future works of the thesis by
argument.

formalism extensions. We are planning to further experiment with
parametric and probabilistic trace expressions to constitute a library of speci�c-
ations for the most commonly used interaction protocols, and to individuate
recurrent patterns that can be usefully exploited to ease the speci�cation of
complex protocols. We also want to provide guidelines and automatic tools to
support the developer for the probabilistic extension (as it is already for the
parametric one). We are currently working to extend RIVERtools (Chapter 14)
towards this direction.

decentralized rv. In Chapter 9 we presented the DecAMon algorithm
for achieving the decentralization of the runtime veri�cation of agent interac-
tion protocols. We left for future developments the investigation of suitable
heuristics for boosting the e�ciency of DecAMon when a MAS partition must
be recomputed very often; other interesting research directions include the
extension of DecAMon to deal with parametric trace expressions (Chapter 6),
and its exploitation in other promising application domains, such as ambient
intelligence systems (Ancona et al., 2015b) and tra�c monitoring. As presen-
ted in the chapter, we assumed the use of the RSC model for achieving the
communication among the agents. As a future work, we are going to present
the di�erences when we consider other less restrictive models. We expect that
everything presented in this chapter will still be valid. The only aspect that
has to change is the de�nition of critical points, since it is the part directly
related to the concept of Good protocol. For instance, considering the most
asynchronous model, it will not be enough to have an agent in common to
satisfy a critical point, but will be necessary to have speci�c agents in common
(in the sequence of two messages we should have the receiver and the sender
in common for instance).

From the point of view of the decentralization problem applied when gaps
are present, in Chapter 10 we discussed our approach focusing only on the
presence of full gaps. We are considering also to extend our implementation to
cope with partially instantiated gaps. Another future work will be to consider
a threshold in order to cut branches that are unreasonable to maintain, as
the pobability to be correct is too low. Fixed a threshold, a monitor will be
able to remove all the branches with a joint probability associated with them

239

17 Conclusions and Future Work

lower than the chosen threshold. This will bring the advantage of anticipating
the error detection and to prune useless branches related to unreasonable
possibilities.

conformance. In Chapter 11 we presented a conformance test for the
trace expression formalism. W.r.t. the �ve steps introduced in Section 11.1, we
exploited achieved results for steps (1-2), we devoted the entire chapter to step
(3), and we demonstrated how to tackle step (5). More sophisticated approaches
could be followed for step (5), each with pros and cons. Experimenting some of
them, such as introducing a mediator agent betweenmas andmas ′ acting as the
i interface and generating wrappers for the agents that must substitute other
agents, will be explored in the future. Step (4) is an open problem which falls
outside the scope of our investigation: in Chapter 11 we do not face the issue of
“semantic/pragmatic conformance”, but only that of “syntactic conformance”. In
case some constraints on interactions are know, for example commitments that
must be ful�lled and that can drive the choice of the most suitable mapping, we
might exploit them. Otherwise, by interpreting messages as words or sentences
in some natural language, we might take advantage of semantic techniques
similar to those used for matching ontological concepts (Mascardi, Locoro,
and Rosso, 2010). Ontology matching could hence be exploited in the global
process we have presented, in step (4). We remark that if we knew in advance
which are the semantically correct message and agents mappings, we could
feed our algorithm with them and use it as a “plain conformance checker” like
those mentioned above, rather than a “conformant mappings builder”. Even if
we knew all the correct mappings in advance, however, we could not run any
of the existing conformance checking algorithms on trace expressions, because
of their higher expressiveness. Finally, an extremely challenging issue would
be to identify mappings where one message used in one MAS corresponds to
a sequence of messages used in another MAS, and to consider message inputs
and outputs as well.

combining static and runtime verification. In Chapter 12 we
presented a way to directly model check a trace expression. The next steps
will be to improve the search for cycles inside expansive terms and, to study in
greater detail the expressivity of trace expressions in order to understand if an
hybrid approach is possible, where the LTL properties veri�ed statically can
bring us to simplify the trace expression generating consequently a simpler
version of the monitor. One possible future work will be achieving the static
veri�cation also for a parametric trace expression. The presence of parameters
makes not usable the standard automata-based approach. One promising way
to solve this problem is through the model checker Cubicle (Conchon et al.,
2012) (used for symbolic backward reachability analysis on in�nite sets of
states).

In Chapter 13 we discussed how to use trace expressions for supporting
MCAPL. In the future, we aim to provide arguments (ideally proofs) that the
behaviour of the abstract environments generated by the system genuinely

240

17 Conclusions and Future Work

expresses the behaviour speci�ed by the trace expressions. It would also
be desirable to express a greater range of constraints in these models – for
instance, the constraint that some belief can only occur after some action
is taken (e.g., that a car can only reach the speed limit after an acceleration
has been performed). Finally, we plan to apply our approach to a real case
study. The scenario we have in mind is a cyberphysical system which must
demonstrate its dependability in order to be acceptable to society and be
trusted by its users. As an example, in a remote patient monitoring system
where the program integrates sensory input, formal guarantees should be
provided that the system respects given medical guidelines (model checking
stage), and a RV stage looking at sensors perceptions should monitor that
those guidelines are continuously met.

rivertools. The future directions of our IDE will include to implement
connectors to other target systems. In the MAS context, we plan to add a
connector to Jason. Outside the MAS community, we will explore the possibility
of an integration with some general purpose system, as Node.js, which has
already been used in fascinating scenarios like the Internet of Things (IoT).

17.3 Unexpected Future Directions

Although the reference domain of this thesis is Arti�cial Intelligence, particu-
larly Distributed Arti�cial Intelligence and MAS, the impact of trace expres-
sions and their extensions goes far beyond the MAS domain. More speci�cally,
we see potential, although somewhat visionary, applications in the following
areas:

• Protocol-driven chatbots: During the Ph.D. I have been working on di�er-
ent projects involving industries where the aim was to develop chatbots.
Nowadays, developing these systems is almost standardized following a
machine learning approach (see Dialog�ow1, Wit.ai2, IBM Watson3, AWS
Lex4, and so on), where the intents (the conversations) and the entities
(the objects) are de�ned by the programmer through examples, and the
chatbot is trained with them. In these scenarios it is easy to lose control
and, if the chatbot is able to dynamically learn from the users, it is hard to
always foresee how the chatbot will react. For this reason protocol-driven
agents (Ancona et al., 2015a) might be a more suitable solution: instead
of training the chatbot using examples we de�ne its behaviours through
protocols. This could be relevant in scenarios where it is important to
have full control of the chatbot.

• RV of chatbots: The initially mentioned frameworks allow a fast and
reusable way to produce complex chatbots with no e�ort. For this reason

1https://dialogflow.com
2https://wit.ai
3https://www.ibm.com/watson/
4https://aws.amazon.com/it/lex/

241

https://dialogflow.com
https://wit.ai
https://www.ibm.com/watson/
https://aws.amazon.com/it/lex/

17 Conclusions and Future Work

the protocol-driven approach, even though it increases the reliability,
could be a less practical solution for developers who are not familiar with
formal speci�cations. Nevertheless, RV could be a more suitable solution
that could help in the development of these systems without in�uencing
their standard creation process. Thanks to RV, we can de�ne the protocols
the chatbot must respect and then just validate its runtime behaviour. In
this way, we can achieve a fast approach supported by many di�erent
frameworks without giving up a reliable and controllable system.

• Self-* systems5: As we mentioned in this thesis, trace expressions have
been successfully exploited for modeling protocol-driven agents (Ancona
et al., 2015a). With them we can de�ne and implement self-* systems
where the components react and change their behaviour dynamically.
Protocol-driven agents are a natural choice for modeling these kind of
systems since they also intrinsically change their protocols dynamically.
Nevertheless, we might need to check our systems – especially if they are
implemented by third parties – and monitors have to present a certain
level of adaptability. A suitable and challenging use of the work presented
in this thesis could be to model a “self-adaptive” monitor, by statically
analysing the trace expression (for instance through model checking, see
Chapter 12) the monitor would be able to check if some requirements
are met and, if not, communicate with other monitors in order to �nd
more suitable trace expressions. In case the analyzed agents would also
be “re�ective”6, adaptivity could take place at the agent level, and not
only at the MAS level.

• IoT : Trace expressions have already been exploited in IoT scenarios
(Ancona et al., 2017b), but only from a centralized point of view. One of
the main contributions of this thesis has been studying and de�ning an
approach to decentralize the RV of MAS. IoT systems are as distributed
as MAS and can bene�t from our approach as well; they usually are
heterogeneously distributed and are strongly dependent on the environ-
ment they are exploited in. During the Ph.D. we thought many times on
how the system’s topology could in�uence the choice of the partitions of
monitors (see Chapter 9). In the MAS �eld this could be relevant, but in
many scenarios the agents are used as an abstraction of our real entities
and the presence of general and well-supported frameworks (such as
Jason and JADE) makes the topology of the system less important7. In IoT
scenarios instead, all the components are implicitly situated inside a real
environment, usually at a lower level. In these scenarios the distribution

5Systems satisfying the Self-* properties de�ned by IBM (Poslad, 2009): Self con�guration,
Self-healing, Self-optimization, Self-protection.

6In computer science, re�ection is the ability of a computer program to ex-
amine, introspect, and modify its own structure and behavior at runtime
(https://www.researchgate.net/profile/Jacques_Malenfant/publication/
243671255_A_Tutorial_on_Behavioral_Reflection_and_its_Implementation).

7This is a conjecture, we should investigate more on this.

242

https://www.researchgate.net/profile/Jacques_Malenfant/publication/243671255_A_Tutorial_on_Behavioral_Reflection_and_its_Implementation
https://www.researchgate.net/profile/Jacques_Malenfant/publication/243671255_A_Tutorial_on_Behavioral_Reflection_and_its_Implementation

17 Conclusions and Future Work

of the RV process may be a�ected by the choice of the partitions and an
integration of the work presented in Chapter 9 could be really useful.

• Mixing RV and testing: In this thesis we focused on RV and its combination
with static veri�cation (such as Model Checking). As we mentioned,
there are three main types of veri�cation of a software system: static
veri�cation, runtime veri�cation and testing. RV is in a certain way a
midway approach between static veri�cation and testing. After having
studied the combination between static and runtime veri�cation, it is
natural to wonder about the connections between RV and testing. It would
be useful to �nd a way for supporting testing using runtime monitors;
more speci�cally, testing is well-know to be a hard discipline where we
try to cover all the behaviours of a software system through groups of
tests. A possible work – challenging as it may be – could be integrating
RV and automated testing8. We could automatically extract tests from a
trace expression, generating monitors only for the paths and branches
of the system which are not covered: since a part is statically tested, this
would simplify trace expressions and make the testing more reliable since
the uncovered branches would be handled by the runtime monitors.

• Team building: During the Ph.D. program I have also been working on
team building projects. In these scenarios the aim is to create serious
games which are used to help people to cooperate and work together as a
team; it is a famous technique used by industries to improve cooperation
among their employees which has also been successfully exploited for
educational purposes. These scenarios have something in common: they
are distributed (as groups, teams and single players) and have rules. For
this reason we started to think about the use of RV for achieving the
validation of these rules at real time when the game is played. These
scenarios are usually unsupported by computer systems but, with the
experience made working on this, we concluded that MAS combined with
runtime monitoring could be a suitable choice for a better standardization
of the approach.

• Education: As for team building, MAS could be a useful and challenging
solution for educational purposes as well. To initiate the new genera-
tions to computer science, many frameworks and techniques have been
proposed9; among the most successful ones is Scratch10 which makes
it possible to introduce children and teenagers to the basic concepts of
computer science in a fun and interactive way. One issue concerning
these approaches is the absence of team work among the participants
which brings most kids to think computer science as a “one-man band”
discipline, contrary to reality. This impression is due to the implicit cent-

8Discipline concerning the automatic generation of tests.
9It is enough to think about the big participation to events like “The hour of code” https:
//hourofcode.com/it.

10https://scratch.mit.edu

243

https://hourofcode.com/it
https://hourofcode.com/it
https://scratch.mit.edu

17 Conclusions and Future Work

ralized implementation of the used frameworks: with Scratch, the kid is
alone and has to interact with the tool without the possibility to com-
municate with the others. Exploiting MAS and their implicit distribution
to decentralize frameworks like Scratch could help with giving the right
impression about our discipline and open many di�erent scenarios of use
and application.

• Trace expressions Inference: During the Ph.D. we thought many times
about possible uses of Grammar Inference to automatically extract trace
expressions directly from the system. Grammar Inference provides a tool
for automatic acquisition of syntax; it is de�ned as the process of learning
a target grammar from a set of labeled sentences (Parekh and Honavar,
1998). Inducing, learning or inferring grammars has been studied for
decades, but only in recent years has grammatical inference emerged as
an independent �eld (Higuera, 2010). Through the works in this thesis
we have studied, implemented and experimented trace expressions from
many di�erent viewpoints. Nevertheless, each contribution always starts
from a trace expression and never the other way around. It could be
extremely interesting and relevant to approach the problem taking a
di�erent perspective, namely starting from the traces generated by the
system and “synthetizing” the corresponding trace expression; once ob-
tained, the trace expression could be used for all the purposes presented
in this thesis.

244

A Medical Guidelines

In this Appendix we represent all the GL properties presented in Bottrighi et al.,
2010 with trace expressions. The GL descriptions, comments and relevance
are taken from Bottrighi et al., 2010.

Structural properties

Structural properties concern the existence of the appropriate clinical requirements, and are
relevant in order to ensure the appropriate management of any patient.
Example
Verify that the GL contains a run not including any surgical intervention (cholelithiasis GL).

∃run .(run ∈ nτo)
τ = (¬surдery:τ)∨ϵ

Comment: The property evaluates to true if there is at least a run in which surgery is never
performed.
Relevance: The most frequent treatment of gallstones is the expectant management (asympto-
matic gallstones).

Example
Verify that any run contains antibiotic treatment (community acquired pneumonia GL).

∀run .(run ∈ nτo)
τ = (antibiotic_treatment :τ1)∨(¬antibiotic_treatment :τ) τ1 = (any:τ1)∨ϵ

Comment: The property evaluates to true if all possible runs contain a state in which an antibi-
otic treatment is administered.
Relevance: The antibiotic treatment is mandatory in the case of community acquired pneumonia.

Example
Verify that the GL contains a run including thrombolysis (ischemic stroke GL).

∃run .(run ∈ nτo)
τ = (trombolysis:τ1)∨(¬trombolysis:τ) τ1 = (any:τ1)∨ϵ

Comment: The property evaluates to true if there is at least a run in which thrombolysis is
executed.
Relevance: It is important to perform a thrombolysis in case the patient is eligible and in the
hospital is present a stroke unit.

Example
Verify that cholecystectomy is not repeated (cholelithiasis GL).

∀run .(run ∈ nτo)
τ = (cholecystectomy:τ1)∨(¬cholecystectomy:τ)∨ϵ

τ1 = (¬cholecystectomy:τ1)∨ϵ
Comment: Once removed, an organ cannot be removed again.
Relevance: The surgical treatment of gallstones in a cholecystectomized patient cannot consist
of a new cholecystectomy.

245

A Medical Guidelines

Medical validity properties

Medical validity properties concern both the exclusion of dangerous treatments and the inclu-
sion of the most appropriate treatments for the considered class of patients.
Example
Verify that there is a run in which the acetylsalicilic acid (ASA) is not used (ischemic stroke
GL).

∃run .(run ∈ nτo)
τ = (¬ASA:τ)∨ϵ

Comment: This is the condition for applying the GL in the case the patient is allergic to ASA.
Relevance: The ASA allergy is potentially life threatening.

Example
Verify that if vital signs are altered, the patient is sent to intensive care unit (ischemic stroke
GL).

∀run .(run ∈ nτo)
τ = (vital_siдns_altered :τ1)∨(¬vital_siдns_altered :τ)∨ϵ

τ1 = (sent_to_intensive_care_unit :τ2)∨(¬sent_to_intensive_care_unit :τ1)
τ2 = (any:τ2)∨ϵ

Comment: Monitoring and treatment in an intensive care unit is preferable in this case.
Relevance: The admission of the patient with altered vital signs in an intensive care unit is
mandatory

Example
Verify that, in the presence of ureteral lithiasis, there is at least one state in which endoscopic
removal is considered (urinary stones LG).

∃run .(run ∈ nτo)
τ = (ureteral_lithiasis_present :τ1)∨(¬ureteral_lithiasis_present :τ)∨ϵ

τ1 = (endoscopic_removal :τ2)∨(¬endoscopic_removal :τ1)
τ2 = (any:τ2)∨ϵ

Comment: Alternative treatments (e.g., surgery) are possible, but more invasive.
Relevance: The endoscopic removal of urinary stones, whenever possible, is preferable.

Contextualization properties

contextualization properties lead from (general) GLs to hospital-speci�c GLs, mainly as concerns
the presence/absence of instrumentation.
Example
Verify that each action costs less than X, with X �xed at design time.

∀run .(run ∈ nτo)
τ = cost_o f _done(X):τ

cost_o f _done(X)) = {Action |cost_o f (Action) < X }

Comment: Cost reduction is one of the most important aspects of health care policy.

Example
Verify that if the CT scanner is not available, patient transfer to another hospital is considered
to perform the test (ischemic stroke GL).

∀run .(run ∈ nτo)

246

A Medical Guidelines

τ = (CT_scanner_absent :τ1)∨(¬CT_scanner_absent :τ)∨ϵ
τ1 = (patient_trans f er :τ2)∨(¬patient_trans f er :τ1)

τ2 = (any:τ2)∨ϵ
Comment: The suspect of ischemic stroke should always be con�rmed by CT.
Relevance: The CT scan is almost always diagnostic of the ischemic event and in�uences the
subsequent decisions.

Example
Verify whether Magnetic Resonance (MR) is used in the GL (ischemic stroke GL).

∃run .(run ∈ nτo)
τ = (MR_imaдinд:τ1)∨(¬MR_imaдinд:τ)

τ1 = (any:τ1)∨ϵ
Comment: This property should be veri�ed since, in the case MR imaging is considered, its
execution must be possible.
Relevance: The MR imaging, when available, is the most diagnostic test in some cases of
ischemic stroke.

Properties about the application of a GL to a speci�c patient

These properties are relevant to ensure a patient-centred approach, considering the peculiarity
of each patient.
Example
Verify that, after a cerebral hemorrhagic event, no anticoagulant drug is administered (ischemic
stroke GL).

∀run .(run ∈ nτo)
τ = (cerebral_hemorrhaдic_event :τ1)∨ϵ

τ1 = (¬anticoaдulant_druд_administration:τ1)∨ϵ
Comment: In the natural evolution of an ischemic stroke, intra-cranial bleeding may be life-
threatening.
Relevance: The intra-cranial hemorrhage is an absolute contraindication to anticoagulant drug
administration.

Example
Verify that, if an infection arises, there is a treatment not based on penicillin.

∃run .(run ∈ nτo)
τ = (in f ection_value_present :τ1)∨(¬in f ection_value_present :τ)∨ϵ

τ1 = (¬penicillin_administration:τ1)∨ϵ
Comment: Notice that, e.g., penicillin treatment cannot be administered to allergic patients.
Relevance: Antibiotic treatment is based on di�erent drugs which should be adapted to the
patient’s di�erent conditions.

Example
Verify that, if hyperpyrexia appears, hemoculture is performed (FUO GL).

∀run .(run ∈ nτo)
τ = (hyperpyrexia_value_present :τ1)∨(¬hyperpyrexia_value_present :τ)∨ϵ

τ1 = (hemoculture:τ)∨(¬hemoculture:τ1)
Comment: In each run, hemoculture must be performed, if hyperpyrexia appears.
Relevance: Hemoculture is very important in the diagnostic process of the FUO because it can

247

A Medical Guidelines

positively in�uence the antibiotic choice.

Example
Verify that there is a treatment in which growth factors are administered, when leukopenia
appears (lymphoma treatment GL).

∃run .(run ∈ nτo)
τ = (leukopenia_value_present :τ1)∨(¬leukopenia_value_present :τ)∨ϵ

τ1 = (дrowth_f actors_administration:τ)∨(¬дrowth_f actors_administration:τ1)
Comment: The growth factors administration can positively reduce the duration of the leuko-
penia and the risk of infections.
Relevance: If leukopenia is not severe, there are also alternative treatments to the administration
of growth factors. That is why we check the existence of one run in which growth factors are
administered, without forcing that they are administered in all runs.

Other complex properties

Example
Verify whether the GL can apply to patients having given features (monitored at subsequent
states; ischemic stroke GL).

∃run .(run ∈ nτo)
τ = ((dysphaдia_value_present :ϵ)|
(swallowinд_test1_value_positive:ϵ)|
(speech_lanдuaдe_evaluation_positive:ϵ)|
(video f luoroдraphy_value_positive:ϵ))·τ1

τ1 = any:τ1
Comment: This sequential approach is recommended in evaluating dysphagia.
Relevance: A complete evaluation of dysphagia should include all the above aspects sequentially.

Example
Verifying whether the GL always prescribes the above sequence of actions for patients with
dysphagia (ischemic stroke GL).

∀run .(run ∈ nτo)
τ = (dysphaдia_value_present :τ1)∨(¬dysphaдia_value_present :τ)∨ϵ
τ1 = (swallowinд_test1:τ2)∨(swallowinд_test_value_positive:τ3)∨
((¬swallowinд_test1:ϵ)∧(¬swallowinд_test_value_positive:ϵ)·τ1)∨ϵ

τ2 = (swallowinд_test_value_positive:τ4)∨(¬swallowinд_test_value_positive:τ2)∨ϵ
τ3 = (swallowinд_test1:τ4)∨(¬swallowinд_test1:τ3)∨ϵ

τ4 = (speech_lanдuaдe_test :τ5)∨(speech_lanдuaдe_evaluation_positive:τ6)∨
((¬speech_lanдuaдe_test :ϵ)∧(¬speech_lanдuaдe_evaluation_positive:ϵ)·τ4)∨ϵ

τ5 = (speech_lanдuaдe_evaluation_positive:τ7)∨(¬speech_lanдuaдe_evaluation_positive:τ5)∨ϵ
τ6 = (speech_lanдuaдe_test :τ7)∨(speech_lanдuaдe_test :τ6)∨ϵ

τ7 = (video f luoroдraphy:τ8)∨(video f luoroдraphy_value_positive:τ9)∨
((¬video f luoroдraphy:ϵ)∧(¬video f luoroдraphy_value_positive:ϵ)·τ7)∨ϵ

τ8 = (video f luoroдraphy_value_positive:τ10)∨(¬video f luoroдraphy_value_positive:τ8)∨ϵ
τ9 = (video f luoroдraphy:τ10)∨(¬video f luoroдraphy:τ9)∨ϵ
τ10 = (arti f icial_nutrition:τ)∨(¬arti f icial_nutrition:τ10)

Comment: A correct treatment (arti�cial nutrition) is mandatory in con�rmed dysphagia.
Relevance: To perform a correct arti�cial nutrition all the above diagnostic aspects of dysphagia
must be evaluated.

248

Bibliography

Ahrendt, Wolfgang, Gordon J. Pace, and Gerardo Schneider (2016). “StaRVOOrS
- Episode II - Strengthen and Distribute the Force”. In: Leveraging Applica-
tions of FormalMethods, Veri�cation and Validation: Foundational Techniques
- 7th International Symposium, ISoLA 2016, Imperial, Corfu, Greece, October
10-14, 2016, Proceedings, Part I, pp. 402–415. doi: 10.1007/978-3-319-
47166-2_28. url: https://doi.org/10.1007/978-3-319-47166-
2_28 (cited on pp. 10, 162).

Ahrendt, Wolfgang, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter
H. Schmitt, and Mattias Ulbrich, eds. (16th Dec. 2016). Deductive Software
Veri�cation - The KeY Book - From Theory to Practice. Vol. 10001. Lecture
Notes in Computer Science. Springer. isbn: 978-3-319-49811-9. doi: 10.
1007/978-3-319-49812-6. url: http://dx.doi.org/10.1007/978-
3-319-49812-6. published (cited on pp. 10, 162).

Aielli, Federica, Davide Ancona, Pasquale Caianiello, Stefania Costantini, Gio-
vanni De Gasperis, Antinisca Di Marco, Angelo Ferrando, and Viviana
Mascardi (2016). “FRIENDLY & KIND with your Health: Human-Friendly
Knowledge-INtensive Dynamic Systems for the e-Health Domain”. In: Proc.
of the International Workshops of PAAMS 2016. Vol. 616. Communications in
Computer and Information Science. Springer, pp. 15–26 (cited on p. 126).

Alberti, Marco, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo
Torroni (2005). “The SCIFF Abductive Proof-Procedure”. In: Proc. of AI*IA
2005. Vol. 3673. LNCS. Springer, pp. 135–147 (cited on pp. 98, 147, 182).

Alberti, Marco, Marco Gavanelli, Evelina Lamma, Federico Chesani, Paola
Mello, and Paolo Torroni (2006). “Compliance veri�cation of agent inter-
action: a logic-based software tool”. In: Applied Arti�cial Intelligence 20.2-4,
pp. 133–157 (cited on p. 147).

Alechina, Natasha, Mehdi Dastani, and Brian Logan (2014). “Norm approx-
imation for imperfect monitors”. In: Proc. of AAMAS 2014. IFAAMAS/ACM,
pp. 117–124 (cited on p. 100).

Alotaibi, Hind and Hussein Zedan (2010). “Runtime veri�cation of safety
properties in multi-agents systems”. In: Proc. of ISDA 2010. IEEE, pp. 356–
362 (cited on p. 196).

Alur, Rajeev, Thomas A. Henzinger, Gerardo La�erriere, and George J. Pappas
(2000). “Discrete Abstractions of Hybrid Systems”. In: Proc. of the IEEE 88.7,
pp. 971–984 (cited on p. 181).

Ancona, D., S. Drossopoulou, and V. Mascardi (2012). “Automatic Generation
of Self-Monitoring MASs from Multiparty Global Session Types in Jason”.
In: Proc. of DALT 2012. Vol. 7784. LNAI. Springer, pp. 76–95 (cited on p. 37).

Ancona, D., A. Ferrando, and V. Mascardi (2017). “Parametric Runtime Veri-
�cation of Multiagent Systems (extended abstract)”. In: Proc. of the 16th

249

https://doi.org/10.1007/978-3-319-47166-2_28
https://doi.org/10.1007/978-3-319-47166-2_28
https://doi.org/10.1007/978-3-319-47166-2_28
https://doi.org/10.1007/978-3-319-47166-2_28
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-319-49812-6

Bibliography

Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017.
Ed. by Kate Larson, Michael Winiko�, Sanmay Das, and Edmund H. Durfee.
ACM, pp. 1457–1459 (cited on pp. 8, 68).

Ancona, Davide, Matteo Barbieri, and Viviana Mascardi (2013). “Constrained
global types for dynamic checking of protocol conformance in multi-agent
systems”. In: Proc. of the 28th Annual ACM Symposium on Applied Comput-
ing, SAC ’13. Ed. by Sung Y. Shin and José Carlos Maldonado. ACM, pp. 1377–
1379. doi: 10.1145/2480362.2480620. url: http://doi.acm.org/10.
1145/2480362.2480620 (cited on pp. 37, 42, 234).

Ancona, Davide, Angelo Ferrando, and Viviana Mascardi (2016). “Theory and
Practice of Formal Methods: Essays Dedicated to Frank de Boer on the
Occasion of His 60th Birthday”. In: Cham: Springer International Publishing.
Chap. Comparing Trace Expressions and Linear Temporal Logic for Runtime
Veri�cation, pp. 47–64. isbn: 978-3-319-30734-3 (cited on pp. 8, 40, 234).

– (2018a). “Agents Interoperability via Conformance Modulo Mapping”. In:
Proceedings of the 19th Workshop "From Objects to Agents", Palermo, Italy,
June 28-29, 2018. Ed. by Massimo Cossentino, Luca Sabatucci, and Valeria
Seidita. Vol. 2215. CEUR Workshop Proceedings. CEUR-WS.org, pp. 109–115.
url: http://ceur-ws.org/Vol-2215/paper_18.pdf (cited on pp. 9,
142).

– (2018b). “Improving �exibility and dependability of remote patient monit-
oring with agent-oriented approaches”. In: Int. J. Agent-Oriented Software
Engineering 6, Nos. 3/4 (cited on pp. 11, 58, 219).

Ancona, Davide, Daniela Briola, Amal El Fallah Seghrouchni, Viviana Mascardi,
and Patrick Taillibert (2014). “E�cient Veri�cation of MASs with Projections”.
In: Engineering Multi-Agent Systems - Second International Workshop, EMAS
2014, Revised Selected Papers. Vol. 8758. LNCS, pp. 246–270 (cited on pp. 99,
100, 234).

Ancona, Davide, Daniela Briola, Angelo Ferrando, and Viviana Mascardi
(2015a). “Global Protocols as First Class Entities for Self-Adaptive Agents”. In:
Proc. of the 2015 International Conference on Autonomous Agents and Multia-
gent Systems, AAMAS 2015. Ed. by Gerhard Weiss, Pinar Yolum, Rafael H.
Bordini, and Edith Elkind. ACM, pp. 1019–1029. url: http://dl.acm.org/
citation.cfm?id=2773282 (cited on pp. 42, 59, 98, 219, 221, 228, 234, 235,
241, 242).

– (2015b). “Runtime veri�cation of fail-uncontrolled and ambient intelligence
systems: A uniform approach”. In: Intelligenza Arti�ciale 9.2, pp. 131–148.
doi: 10.3233/IA-150084. url: http://dx.doi.org/10.3233/IA-
150084 (cited on pp. 234, 239).

– (2016). “MAS-DRiVe: a Practical Approach to Decentralized Runtime Veri�c-
ation of Agent Interaction Protocols”. In: Proc. of the 17th Workshop "From
Objects to Agents". Ed. by Corrado Santoro, Fabrizio Messina, and Massimili-
ano De Benedetti. Vol. 1664. CEUR Workshop Proceedings. CEUR-WS.org,
pp. 35–43. url: http://ceur-ws.org/Vol-1664/w7.pdf (cited on pp. 9,
99, 100, 234).

250

https://doi.org/10.1145/2480362.2480620
http://doi.acm.org/10.1145/2480362.2480620
http://doi.acm.org/10.1145/2480362.2480620
http://ceur-ws.org/Vol-2215/paper_18.pdf
http://dl.acm.org/citation.cfm?id=2773282
http://dl.acm.org/citation.cfm?id=2773282
https://doi.org/10.3233/IA-150084
http://dx.doi.org/10.3233/IA-150084
http://dx.doi.org/10.3233/IA-150084
http://ceur-ws.org/Vol-1664/w7.pdf

Bibliography

Ancona, Davide, Angelo Ferrando, Luca Franceschini, and Viviana Mascardi
(2017a). “Parametric Trace Expressions for Runtime Veri�cation of Java-Like
Programs”. In: Proc. of the 19th Workshop on Formal Techniques for Java-
like Programs. ACM, 10:1–10:6. doi: 10.1145/3103111.3104037. url:
http://doi.acm.org/10.1145/3103111.3104037 (cited on pp. 8, 180,
234, 236).

Ancona, Davide, Luca Franceschini, Giorgio Delzanno, Maurizio Leotta, Marina
Ribaudo, and Filippo Ricca (2017b). “Towards Runtime Monitoring of Node.js
and Its Application to the Internet of Things”. In: ALP4IoT@iFM. Vol. 264.
EPTCS, pp. 27–42 (cited on pp. 180, 236, 238, 242).

Ancona, Davide, Angelo Ferrando, Luca Franceschini, and Viviana Mascardi
(2018a). “Coping with Bad Agent Interaction Protocols When Monitoring
Partially Observable Multiagent Systems”. In: PAAMS. Vol. 10978. Lecture
Notes in Computer Science. Springer, pp. 59–71 (cited on pp. 9, 97).

– (2018b). “Managing Bad AIPs with RIVERtools”. In: PAAMS. Vol. 10978. Lec-
ture Notes in Computer Science. Springer, pp. 296–300 (cited on pp. 10,
195).

Arrott, Matthew, Alan D Chave, Claudiu Farcas, Emilia Farcas, Jack E Kleinert,
Ingolf Krueger, Michael Meisinger, John A Orcutt, Cheryl Peach, Oscar
Scho�eld, et al. (2009). “Integrating marine observatories into a system-of-
systems: Messaging in the US Ocean Observatories Initiative”. In: OCEANS
2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local
Challenges. IEEE, pp. 1–9 (cited on p. 63).

Artho, Cyrille and Armin Biere (2005). “Combined Static and Dynamic Ana-
lysis”. In: Electr. Notes Theor. Comput. Sci. 131, pp. 3–14. doi: 10.1016/j.
entcs.2005.01.018. url: https://doi.org/10.1016/j.entcs.2005.
01.018 (cited on pp. 10, 162).

Artho, Cyrille, Viktor Schuppan, Armin Biere, Pascal Eugster, Marcel Baur,
and Boris Zweimüller (2004). “JNuke: E�cient Dynamic Analysis for Java”.
In: Computer Aided Veri�cation, 16th International Conference, CAV 2004,
Boston, MA, USA, July 13-17, 2004, Proceedings, pp. 462–465. doi: 10.1007/
978-3-540-27813-9_37. url: https://doi.org/10.1007/978-3-
540-27813-9_37 (cited on pp. 10, 162).

Austin, J.L. (1962). How to Do Things with Words. Oxford (cited on p. 18).
Avizienis, Algirdas (1967). “Design of Fault-tolerant Computers”. In: Proc. of
the American Federation of Information Processing Societies Joint Computer
Conference, AFIPS ’67 (Fall). New York, NY, USA: ACM, pp. 733–743. doi:
10.1145/1465611.1465708. url: http://doi.acm.org/10.1145/
1465611.1465708 (cited on p. 59).

Avizienis, Algirdas, Jean-Claude Laprie, Brian Randell, and Carl Landwehr (Jan.
2004). “Basic Concepts and Taxonomy of Dependable and Secure Comput-
ing”. In: IEEE Trans. Dependable Secur. Comput. 1.1, pp. 11–33. issn: 1545-5971.
doi: 10.1109/TDSC.2004.2. url: http://dx.doi.org/10.1109/TDSC.
2004.2 (cited on pp. 59, 221).

251

https://doi.org/10.1145/3103111.3104037
http://doi.acm.org/10.1145/3103111.3104037
https://doi.org/10.1016/j.entcs.2005.01.018
https://doi.org/10.1016/j.entcs.2005.01.018
https://doi.org/10.1016/j.entcs.2005.01.018
https://doi.org/10.1016/j.entcs.2005.01.018
https://doi.org/10.1007/978-3-540-27813-9_37
https://doi.org/10.1007/978-3-540-27813-9_37
https://doi.org/10.1007/978-3-540-27813-9_37
https://doi.org/10.1007/978-3-540-27813-9_37
https://doi.org/10.1145/1465611.1465708
http://doi.acm.org/10.1145/1465611.1465708
http://doi.acm.org/10.1145/1465611.1465708
https://doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/TDSC.2004.2

Bibliography

Babaee, Reza, Arie Gur�nkel, and Sebastian Fischmeister (2018). “Prevent : A
Predictive Run-Time Veri�cation Framework Using Statistical Learning”. In:
SEFM. Vol. 10886. Lecture Notes in Computer Science. Springer, pp. 205–220
(cited on p. 80).

Bakar, Najwa Abu and Ali Selamat (2013). “Runtime Veri�cation of Multi-agent
Systems Interaction Quality”. In: Proc. of ACIIDS 2013, pp. 435–444. doi:
10.1007/978-3-642-36546-1_45. url: https://doi.org/10.1007/
978-3-642-36546-1_45 (cited on p. 196).

Baldoni, M., C. Baroglio, A. Martelli, and V. Patti (2005a). “Veri�cation of
Protocol Conformance and Agent Interoperability”. In: Proc. of CLMAS 2005,
Revised Selected and Invited Papers. Vol. 3900. LNCS. Springer, pp. 265–283
(cited on pp. 98, 146).

Baldoni, Matteo, Cristina Baroglio, and Federico Capuzzimati (2013). “2COMM:
A Commitment-Based MAS Architecture”. In: EMAS@AAMAS. Vol. 8245.
LNCS, pp. 38–57 (cited on p. 146).

– (2014a). “A Commitment-Based Infrastructure for Programming Socio-Technical
Systems”. In: ACM Trans. Internet Techn. 14.4, 23:1–23:23. doi: 10.1145/
2677206. url: http://doi.acm.org/10.1145/2677206 (cited on p. 129).

– (2014b). “Typing Multi-Agent Systems via Commitments”. In: EMAS@AAMAS.
Vol. 8758. LNCS, pp. 388–405 (cited on p. 146).

Baldoni, Matteo, Cristina Baroglio, and Elisa Marengo (2010). “Behavior-Oriented
Commitment-based Protocols”. In: Proc. of ECAI 2010 - 19th European Confer-
ence on Arti�cial Intelligence. Ed. by Helder Coelho, Rudi Studer, and Michael
Wooldridge. Vol. 215. Frontiers in Arti�cial Intelligence and Applications.
IOS Press, pp. 137–142. url: http://www.booksonline.iospress.nl/
Content/View.aspx?piid=17729 (cited on p. 62).

Baldoni, Matteo, Cristina Baroglio, Alberto Martelli, Viviana Patti, and Clau-
dio Schifanella (2004). “Verifying Protocol Conformance for Logic-Based
Communicating Agents”. In: CLIMA. Vol. 3487. LNCS, pp. 196–212 (cited on
p. 146).

– (2005b). “Verifying the Conformance of Web Services to Global Interaction
Protocols: A First Step”. In: EPEW/WS-FM. Vol. 3670. LNCS, pp. 257–271
(cited on pp. 146, 152).

Baldoni, Matteo, Cristina Baroglio, Alberto Martelli, and Viviana Patti (2006).
“A Priori Conformance Veri�cation for Guaranteeing Interoperability in
Open Environments”. In: ICSOC. Vol. 4294. LNCS, pp. 339–351 (cited on
pp. 146, 152).

Baldoni, Matteo, Cristina Baroglio, Amit K. Chopra, Nirmit Desai, Viviana Patti,
and Munindar P. Singh (2009). “Choice, interoperability, and conformance in
interaction protocols and service choreographies”. In:AAMAS (2). IFAAMAS,
pp. 843–850 (cited on p. 146).

Baldoni, Matteo, Cristina Baroglio, Elisa Marengo, Viviana Patti, and Federico
Capuzzimati (2014). “Engineering commitment-based business protocols
with the 2CL methodology”. In:Autonomous Agents andMulti-Agent Systems
28.4, pp. 519–557 (cited on p. 63).

252

https://doi.org/10.1007/978-3-642-36546-1_45
https://doi.org/10.1007/978-3-642-36546-1_45
https://doi.org/10.1007/978-3-642-36546-1_45
https://doi.org/10.1145/2677206
https://doi.org/10.1145/2677206
http://doi.acm.org/10.1145/2677206
http://www.booksonline.iospress.nl/Content/View.aspx?piid=17729
http://www.booksonline.iospress.nl/Content/View.aspx?piid=17729

Bibliography

Baldoni, Matteo, Cristina Baroglio, Federico Capuzzimati, and Roberto Mical-
izio (2015). “Exploiting Social Commitments in Programming Agent Interac-
tion”. In: Proc. of PRIMA 2015. Vol. 9387. LNCS. Springer, pp. 566–574 (cited
on p. 129).

– (2018). “Type checking for protocol role enactments via commitments”. In:
Autonomous Agents and Multi-Agent Systems 32.3, pp. 349–386. doi: 10.
1007/s10458-018-9382-3. url: https://doi.org/10.1007/s10458-
018-9382-3 (cited on p. 146).

Barringer, Howard, Alex Groce, Klaus Havelund, and Margaret H. Smith (2010).
“Formal Analysis of Log Files”. In: JACIC 7.11, pp. 365–390 (cited on p. 81).

Bartocci, Ezio (2013). “Sampling-based Decentralized Monitoring for Net-
worked Embedded Systems”. In: HAS. Vol. 124. EPTCS, pp. 85–99 (cited
on p. 128).

Bartocci, Ezio and Yliès Falcone, eds. (2018). Lectures on Runtime Veri�cation
- Introductory and Advanced Topics. Vol. 10457. Lecture Notes in Computer
Science. Springer (cited on p. 80).

Bartocci, Ezio, Radu Grosu, Panagiotis Katsaros, C. R. Ramakrishnan, and
Scott A. Smolka (2011). “Model Repair for Probabilistic Systems”. In: TACAS.
Vol. 6605. Lecture Notes in Computer Science. Springer, pp. 326–340 (cited
on p. 80).

Bartocci, Ezio, Yliès Falcone, Adrian Francalanza, and Giles Reger (2018). “In-
troduction to Runtime Veri�cation”. In: Lectures on Runtime Veri�cation.
Vol. 10457. Lecture Notes in Computer Science. Springer, pp. 1–33 (cited on
p. 80).

Basin, David A., Felix Klaedtke, Srdjan Marinovic, and Eugen Zalinescu (2012).
“Monitoring Compliance Policies over Incomplete and Disagreeing Logs”. In:
Proc. of RV 2012, Revised Selected Papers. Vol. 7687. LNCS. Springer, pp. 151–
167 (cited on p. 101).

Bauer, Andreas, Martin Leucker, and Christian Schallhart (2009). “Runtime
Veri�cation for LTL and TLTL”. In: ACM Transactions on Software Engineer-
ing and Methodology (TOSEM). in press (cited on pp. 32, 33, 41, 162).

Bauer, Bernhard, Jörg P Müller, and James Odell (2001). “Agent UML: A form-
alism for specifying multiagent software systems”. In: International journal
of software engineering and knowledge engineering 11.03, pp. 207–230 (cited
on p. 60).

Baum, Leonard E. and Ted Petrie (Dec. 1966). “Statistical Inference for Prob-
abilistic Functions of Finite State Markov Chains”. In: Ann. Math. Statist.
37.6, pp. 1554–1563. doi: 10.1214/aoms/1177699147. url: https://doi.
org/10.1214/aoms/1177699147 (cited on p. 36).

Bayliss, Elizabeth A., John F. Steiner, Douglas H. Fernald, Lori A. Crane, and
Deborah S. Main (2003). “Descriptions of barriers to self-care by persons
with comorbid chronic diseases”. In: Annals of Family Medicine 1.1, pp. 15–21
(cited on p. 220).

253

https://doi.org/10.1007/s10458-018-9382-3
https://doi.org/10.1007/s10458-018-9382-3
https://doi.org/10.1007/s10458-018-9382-3
https://doi.org/10.1007/s10458-018-9382-3
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1214/aoms/1177699147

Bibliography

Bellifemine, Fabio Luigi, Giovanni Caire, and Dominic Greenwood (2007).
Developing Multi-Agent Systems with JADE. Wiley (cited on pp. 10, 21, 146,
235).

Benerecetti, Massimo, Fausto Giunchiglia, and Luciano Sera�ni (1998). “Model
Checking Multiagent Systems”. In: J. Log. Comput. 8.3, pp. 401–423. doi:
10.1093/logcom/8.3.401. url: https://doi.org/10.1093/logcom/
8.3.401 (cited on p. 181).

Bertot, Yves and Pierre Castran (2010). Interactive Theorem Proving and Pro-
gramDevelopment: Coq’Art The Calculus of Inductive Constructions. 1st. Springer
Publishing Company, Incorporated. isbn: 3642058809, 9783642058806 (cited
on p. 30).

Bettini, Lorenzo, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangi-
ola Dezani-Ciancaglini, and Nobuko Yoshida (2008). “Global Progress in
Dynamically Interleaved Multiparty Sessions”. In: Proc. of CONCUR 2008.
Vol. 5201. Springer, pp. 418–433 (cited on p. 98).

Bodden, Eric (Mar. 2005). “E�cient and Expressive Runtime Veri�cation for
Java”. In: Grand Finals of the ACM Student Research Competition 2005. url:
http : / / www . bodden . de / pubs / bodden05efficient . pdf (cited on
p. 161).

Boer, Frank S. de, Koen V. Hindriks, Wiebe van der Hoek, and John-Jules
Ch. Meyer (2007). “A veri�cation framework for agent programming with
declarative goals”. In: J. Applied Logic 5.2, pp. 277–302. doi: 10.1016/j.
jal.2005.12.014. url: https://doi.org/10.1016/j.jal.2005.12.
014 (cited on p. 21).

Bonakdarpour, Borzoo, Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Tra-
vers, eds. (2016a). Bertinoro Seminar on Distributed Runtime Veri�cation, May
2016, Available from http://www.labri.fr/perso/travers/DRV2016/ (cited
on pp. 80, 128).

– (2016b). “Challenges in Fault-Tolerant Distributed Runtime Veri�cation”.
In: Leveraging Applications of Formal Methods, Veri�cation and Validation:
Discussion, Dissemination, Applications: 7th International Symposium, ISoLA
2016. Proceedings, Part II. Ed. by Tiziana Margaria and Bernhard Ste�en.
Springer, pp. 363–370. isbn: 978-3-319-47169-3. doi: 10.1007/978-3-319-
47169-3_27. url: http://dx.doi.org/10.1007/978-3-319-47169-
3_27 (cited on pp. 111, 128).

Bonnell, Sarah and Suneet Mittal (2013). “Clinical Guidelines for Remote
Monitoring”. In: Cardiac Electrophysiology Clinics 5.3. Remote Monitoring
and Physiologic Sensing Technologies, pp. 283 –291. issn: 1877-9182. doi:
https://doi.org/10.1016/j.ccep.2013.05.003. url: http://
www.sciencedirect.com/science/article/pii/S1877918213000610

(cited on p. 222).
Bordeaux, Lucas, Gwen Salaün, Daniela Berardi, and Massimo Mecella (2004).

“When are Two Web Services Compatible?” In: TES. Vol. 3324. LNCS, pp. 15–
28 (cited on p. 147).

254

https://doi.org/10.1093/logcom/8.3.401
https://doi.org/10.1093/logcom/8.3.401
https://doi.org/10.1093/logcom/8.3.401
http://www.bodden.de/pubs/bodden05efficient.pdf
https://doi.org/10.1016/j.jal.2005.12.014
https://doi.org/10.1016/j.jal.2005.12.014
https://doi.org/10.1016/j.jal.2005.12.014
https://doi.org/10.1016/j.jal.2005.12.014
https://doi.org/10.1007/978-3-319-47169-3_27
https://doi.org/10.1007/978-3-319-47169-3_27
http://dx.doi.org/10.1007/978-3-319-47169-3_27
http://dx.doi.org/10.1007/978-3-319-47169-3_27
https://doi.org/https://doi.org/10.1016/j.ccep.2013.05.003
http://www.sciencedirect.com/science/article/pii/S1877918213000610
http://www.sciencedirect.com/science/article/pii/S1877918213000610

Bibliography

Bordini, R. H., J. F. Hübner, and M. Wooldridge (2007). Programming Multi-
Agent Systems in AgentSpeak Using Jason. John Wiley & Sons (cited on pp. 20,
235).

Bordini, Rafael H., Michael Fisher, Willem Visser, and Michael Wooldridge
(2004). “Model Checking Rational Agents”. In: IEEE Intelligent Systems 19.5,
pp. 46–52. doi: 10.1109/MIS.2004.47. url: https://doi.org/10.
1109/MIS.2004.47 (cited on p. 35).

– (2006). “Verifying Multi-agent Programs by Model Checking”. In: Autonom-
ous Agents and Multi-Agent Systems 12.2, pp. 239–256. doi: 10 . 1007 /
s10458- 006- 5955- 7. url: https://doi.org/10.1007/s10458-
006-5955-7 (cited on pp. 3, 35, 182).

Bordini, Rafael H., Louise A. Dennis, Berndt Farwer, and Michael Fisher (2008).
“Automated Veri�cation of Multi-Agent Programs”. In: 23rd IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE 2008), 15-19
September 2008, L’Aquila, Italy. IEEE Computer Society, pp. 69–78. doi:
10.1109/ASE.2008.17. url: https://doi.org/10.1109/ASE.2008.17
(cited on p. 36).

Borst, Willem Nico (1997). “Construction of Engineering Ontologies for Know-
ledge Sharing and Reuse.” base-search.net (ftunivtwente:oai:doc.utwente.nl:17864).
PhD thesis. University of Twente, Enschede, Netherlands (cited on p. 19).

Bottrighi, Alessio, Laura Giordano, Gianpaolo Molino, Stefania Montani, Paolo
Terenziani, and Mauro Torchio (2010). “Adopting model checking techniques
for clinical guidelines veri�cation”. In: Arti�cial Intelligence in Medicine 48.1,
pp. 1–19. doi: 10.1016/j.artmed.2009.09.003. url: https://doi.
org/10.1016/j.artmed.2009.09.003 (cited on pp. 221–223, 228, 245).

Bratman, M. (1987). Intention, plans, and practical reason. Cambridge, MA: Har-
vard University Press. isbn: 9780674458185. url: http://books.google.
de/books?id=I0nuAAAAMAAJ (cited on p. 20).

Bratman, Michael E., David J. Israel, and Martha E. Pollack (1988). “Plans
and resource-bounded practical reasoning”. In: Computational Intelligence
4.3, pp. 349–355. issn: 1467-8640. doi: 10.1111/j.1467-8640.1988.
tb00284.x. url: http://dx.doi.org/10.1111/j.1467-8640.1988.
tb00284.x (cited on p. 20).

Bravetti, Mario and Gianluigi Zavattaro (2007a). “A Theory for Strong Service
Compliance”. In: COORDINATION. Vol. 4467. LNCS, pp. 96–112 (cited on
p. 147).

– (2007b). “Contract Based Multi-party Service Composition”. In: FSEN. Vol. 4767.
LNCS, pp. 207–222 (cited on p. 147).

Briola, Daniela and Viviana Mascardi (2011). “Design and Implementation
of a NetLogo Interface for the Stand-Alone FYPA System”. In: Proce. of
WOA, the 12th Workshop on Objects and Agents. Ed. by Giancarlo Fortino,
Alfredo Garro, Luigi Palopoli, Wilma Russo, and Giandomenico Spezzano.
Vol. 741. CEUR Workshop Proceedings. CEUR-WS.org, pp. 41–50. url: http:
//ceur-ws.org/Vol-741/ID10_Briola_Mascardi.pdf (cited on p. 235).

255

https://doi.org/10.1109/MIS.2004.47
https://doi.org/10.1109/MIS.2004.47
https://doi.org/10.1109/MIS.2004.47
https://doi.org/10.1007/s10458-006-5955-7
https://doi.org/10.1007/s10458-006-5955-7
https://doi.org/10.1007/s10458-006-5955-7
https://doi.org/10.1007/s10458-006-5955-7
https://doi.org/10.1109/ASE.2008.17
https://doi.org/10.1109/ASE.2008.17
https://doi.org/10.1016/j.artmed.2009.09.003
https://doi.org/10.1016/j.artmed.2009.09.003
https://doi.org/10.1016/j.artmed.2009.09.003
http://books.google.de/books?id=I0nuAAAAMAAJ
http://books.google.de/books?id=I0nuAAAAMAAJ
https://doi.org/10.1111/j.1467-8640.1988.tb00284.x
https://doi.org/10.1111/j.1467-8640.1988.tb00284.x
http://dx.doi.org/10.1111/j.1467-8640.1988.tb00284.x
http://dx.doi.org/10.1111/j.1467-8640.1988.tb00284.x
http://ceur-ws.org/Vol-741/ID10_Briola_Mascardi.pdf
http://ceur-ws.org/Vol-741/ID10_Briola_Mascardi.pdf

Bibliography

Briola, Daniela, Viviana Mascardi, and Davide Ancona (2014a). “Distributed
Runtime Veri�cation of JADE Multiagent Systems”. In: Proc. of the 8th Inter-
national Symposium on Intelligent Distributed Computing, IDC 2014. Ed. by
David Camacho, Lars Braubach, Salvatore Venticinque, and Costin Badica.
Vol. 570. Studies in Computational Intelligence. Springer, pp. 81–91. doi:
10.1007/978-3-319-10422-5_10. url: http://dx.doi.org/10.
1007/978-3-319-10422-5_10 (cited on p. 234).

– (2014b). “Distributed Runtime Veri�cation of JADE and Jason Multiagent Sys-
tems with Prolog”. In: Proc. of CILC 2014, the 29th Italian Conference on Com-
putational Logic. Ed. by Laura Giordano, Valentina Gliozzi, and Gian Luca
Pozzato. Vol. 1195. CEUR Workshop Proceedings. CEUR-WS.org, pp. 319–323.
url: http://ceur-ws.org/Vol-1195/short3.pdf (cited on p. 234).

Broy, Manfred, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alex-
ander Pretschner (2005a).Model-Based Testing of Reactive Systems: Advanced
Lectures (LNCS). Secaucus, NJ, USA: Springer-Verlag New York, Inc. isbn:
3540262784 (cited on p. 30).

Broy, Manfred, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Al-
exander Pretschner, eds. (2005b). Model-Based Testing of Reactive Systems,
Advanced Lectures [The volume is the outcome of a research seminar that was
held in Schloss Dagstuhl in January 2004]. Vol. 3472. Lecture Notes in Com-
puter Science. Springer. isbn: 3-540-26278-4. doi: 10.1007/b137241. url:
https://doi.org/10.1007/b137241 (cited on p. 160).

Büchi, J. Richard (1990). “On a Decision Method in Restricted Second Order
Arithmetic”. In: The Collected Works of J. Richard Büchi. Ed. by Saunders
Mac Lane and Dirk Siefkes. New York, NY: Springer New York, pp. 425–435.
isbn: 978-1-4613-8928-6. doi: 10.1007/978-1-4613-8928-6_23. url:
https://doi.org/10.1007/978-1-4613-8928-6_23 (cited on p. 32).

Bulling, Nils, Mehdi Dastani, and Max Knobbout (2013). “Monitoring norm
violations in multi-agent systems”. In: Proc. of AAMAS 2013. IFAAMAS,
pp. 491–498 (cited on p. 100).

Busi, Nadia, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi
Zavattaro (2005). “Choreography and Orchestration: A Synergic Approach
for System Design”. In: ICSOC. Vol. 3826. LNCS, pp. 228–240 (cited on p. 147).

Calinescu, Radu, Danny Weyns, Simos Gerasimou, Muhammad Usman Iftikhar,
Ibrahim Habli, and Tim Kelly (2018). “Engineering Trustworthy Self-Adaptive
Software with Dynamic Assurance Cases”. In: IEEE Trans. Software Eng. 44.11,
pp. 1039–1069 (cited on p. 65).

Capecchi, Sara, Mario Coppo, Mariangiola Dezani-Ciancaglini, Sophia Dros-
sopoulou, and Elena Giachino (Feb. 2009). “Amalgamating Sessions and
Methods in Object-oriented Languages with Generics”. In: Theor. Comput.
Sci. 410.2-3, pp. 142–167. issn: 0304-3975. doi: 10.1016/j.tcs.2008.09.
016. url: http://dx.doi.org/10.1016/j.tcs.2008.09.016 (cited on
p. 162).

Casella, Giovanni and Viviana Mascardi (2007). “West2East: exploiting WEb
Service Technologies to Engineer Agent-based SofTware”. In: IJAOSE 1.3/4,

256

https://doi.org/10.1007/978-3-319-10422-5_10
http://dx.doi.org/10.1007/978-3-319-10422-5_10
http://dx.doi.org/10.1007/978-3-319-10422-5_10
http://ceur-ws.org/Vol-1195/short3.pdf
https://doi.org/10.1007/b137241
https://doi.org/10.1007/b137241
https://doi.org/10.1007/978-1-4613-8928-6_23
https://doi.org/10.1007/978-1-4613-8928-6_23
https://doi.org/10.1016/j.tcs.2008.09.016
https://doi.org/10.1016/j.tcs.2008.09.016
http://dx.doi.org/10.1016/j.tcs.2008.09.016

Bibliography

pp. 396–434. doi: 10.1504/IJAOSE.2007.016267. url: https://doi.
org/10.1504/IJAOSE.2007.016267 (cited on p. 98).

Castagna, Giuseppe, Mariangiola Dezani-Ciancaglini, and Luca Padovani (2012).
“On Global Types and Multi-Party Session”. In: Logical Methods in Computer
Science 8.1. doi: 10.2168/LMCS-8(1:24)2012. url: https://doi.org/
10.2168/LMCS-8(1:24)2012 (cited on pp. 102, 103).

Chaudhry, Sarwat I., Jennifer A. Mattera, Jeptha P. Curtis, John A. Spertus, Jeph
Herrin, Zhenqiu Lin, Christopher O. Phillips, Beth V. Hodshon, Lawton S.
Cooper, and Harlan M. Krumholz (2010). “Telemonitoring in Patients with
Heart Failure”. In: New England Journal of Medicine 363.24, pp. 2301–2309
(cited on p. 220).

Chen, Bihuan, Xin Peng, Yang Liu, Songzheng Song, Jiahuan Zheng, and
Wenyun Zhao (2017). “Architecture-Based Behavioral Adaptation with Gen-
erated Alternatives and Relaxed Constraints”. In: IEEE Transactions on Ser-
vices Computing PP.99, pp. 1–1 (cited on p. 59).

Chen, F. and G. Rosu (2007). “Mop: an e�cient and generic runtime veri�cation
framework”. In: OOPSLA 2007, pp. 569–588 (cited on p. 31).

Chesani, Federico, Paola Mello, Marco Montali, and Paolo Torroni (2009).
“Commitment Tracking via the Reactive Event Calculus”. In: Proc. of the 21st
International Joint Conference on Arti�cal Intelligence. IJCAI’09, pp. 91–96
(cited on pp. 182, 196).

– (2013). “Representing and monitoring social commitments using the event
calculus”. In: Autonomous Agents and Multi-Agent Systems 27.1, pp. 85–130
(cited on pp. 62, 63).

Chevrou, Florent, Aurélie Hurault, and Philippe Quéinnec (2016). “On the
diversity of asynchronous communication”. In: Formal Asp. Comput. 28.5,
pp. 847–879. doi: 10.1007/s00165-016-0379-x. url: https://doi.
org/10.1007/s00165-016-0379-x (cited on p. 108).

Chimento, Jesús Mauricio, Wolfgang Ahrendt, Gordon J. Pace, and Gerardo
Schneider (2015). “StaRVOOrS: A Tool for Combined Static and Runtime Veri-
�cation of Java”. In: Runtime Veri�cation - 6th International Conference, RV
2015 Vienna, Austria, September 22-25, 2015. Proceedings, pp. 297–305. doi:
10.1007/978-3-319-23820-3_21. url: https://doi.org/10.1007/
978-3-319-23820-3_21 (cited on pp. 10, 162).

Chopra, Amit K, Samuel H Christie V, and Munindar P Singh (2017). “Splee: a
declarative information-based language for multiagent interaction proto-
cols”. In: Proc. of the 16th Conference on Autonomous Agents and MultiAgent
Systems, AAMAS 2017. International Foundation for Autonomous Agents
and Multiagent Systems, pp. 1054–1063 (cited on p. 61).

Chopra, Amit K., Samuel Christie, and Munindar P. Singh (2017). “Splee: A De-
clarative Information-Based Language for Multiagent Interaction Protocols”.
In: Proc. of AAMAS 2017. ACM, pp. 1054–1063 (cited on p. 129).

Chopra, Amit K. and Munindar P. Singh (2006). “Producing Compliant Inter-
actions: Conformance, Coverage, and Interoperability”. In: DALT. Vol. 4327.
LNCS, pp. 1–15 (cited on p. 147).

257

https://doi.org/10.1504/IJAOSE.2007.016267
https://doi.org/10.1504/IJAOSE.2007.016267
https://doi.org/10.1504/IJAOSE.2007.016267
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.1007/s00165-016-0379-x
https://doi.org/10.1007/s00165-016-0379-x
https://doi.org/10.1007/s00165-016-0379-x
https://doi.org/10.1007/978-3-319-23820-3_21
https://doi.org/10.1007/978-3-319-23820-3_21
https://doi.org/10.1007/978-3-319-23820-3_21

Bibliography

Chopra, Amit K. and Munindar P. Singh (2007). “Interoperation in Protocol
Enactment”. In: DALT. Vol. 4897. LNCS, pp. 36–49 (cited on p. 147).

– (2015a). “Cupid: Commitments in Relational Algebra”. In: Proc. of the Twenty-
Ninth AAAI Conference on Arti�cial Intelligence. Ed. by Blai Bonet and Sven
Koenig. AAAI Press, pp. 2052–2059. url: http://www.aaai.org/ocs/
index.php/AAAI/AAAI15/paper/view/9938 (cited on pp. 63, 129).

– (2015b). “Generalized Commitment Alignment”. In: Proc. of the 2015 Interna-
tional Conference on Autonomous Agents and Multiagent Systems, AAMAS
2015. Ed. by Gerhard Weiss, Pinar Yolum, Rafael H. Bordini, and Edith El-
kind. ACM, pp. 453–461. url: http://dl.acm.org/citation.cfm?id=
2772938 (cited on p. 61).

– (2016). “Custard: Computing Norm States over Information Stores”. In: Proc.
of the 2016 International Conference on Autonomous Agents & Multiagent
Systems. Ed. by Catholijn M. Jonker, Stacy Marsella, John Thangarajah, and
Karl Tuyls. ACM, pp. 1096–1105. url: http://dl.acm.org/citation.
cfm?id=2937085 (cited on p. 63).

Chow, Tsun S. (1978). “Testing Software Design Modeled by Finite-State Ma-
chines”. In: IEEE Trans. Software Eng. 4.3, pp. 178–187. doi: 10.1109/TSE.
1978.231496. url: https://doi.org/10.1109/TSE.1978.231496
(cited on p. 160).

Clarke, Edmund M. (2008). “25 Years of Model Checking”. In: ed. by Orna
Grumberg and Helmut Veith. Berlin, Heidelberg: Springer-Verlag. Chap. The
Birth of Model Checking, pp. 1–26. isbn: 978-3-540-69849-4. doi: 10.1007/
978-3-540-69850-0_1. url: http://dx.doi.org/10.1007/978-3-
540-69850-0_1 (cited on p. 29).

Clarke, Edmund M., Orna Grumberg, and Doron A. Peled (2001). Model check-
ing. MIT Press. isbn: 978-0-262-03270-4. url: http://books.google.
de/books?id=Nmc4wEaLXFEC (cited on p. 160).

Clarke Jr., Edmund M., Orna Grumberg, and Doron A. Peled (1999). Model
Checking. Cambridge, MA, USA: MIT Press. isbn: 0-262-03270-8 (cited on
pp. 3, 28, 30).

Cohen, J., D. Perrin, and J.-E Pin (1993). “On the expressive power of temporal
logic”. In: J.Comput. Syst.Sci. 46, pp. 271–294 (cited on pp. 32, 57).

Cohen, Philip R. and Hector J. Levesque (1990). “Intention is Choice with
Commitment”. In: Artif. Intell. 42.2-3, pp. 213–261. doi: 10.1016/0004-
3702(90)90055-5. url: https://doi.org/10.1016/0004-3702(90)
90055-5 (cited on p. 20).

Colombo, Christian, Gordon J. Pace, and Gerardo Schneider (2009). “LARVA —
Safer Monitoring of Real-Time Java Programs (Tool Paper)”. In: Seventh IEEE
International Conference on Software Engineering and Formal Methods, SEFM
2009, Hanoi, Vietnam, 23-27 November 2009, pp. 33–37. doi: 10.1109/SEFM.
2009.13. url: https://doi.org/10.1109/SEFM.2009.13 (cited on
pp. 10, 162).

258

http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9938
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9938
http://dl.acm.org/citation.cfm?id=2772938
http://dl.acm.org/citation.cfm?id=2772938
http://dl.acm.org/citation.cfm?id=2937085
http://dl.acm.org/citation.cfm?id=2937085
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1007/978-3-540-69850-0_1
https://doi.org/10.1007/978-3-540-69850-0_1
http://dx.doi.org/10.1007/978-3-540-69850-0_1
http://dx.doi.org/10.1007/978-3-540-69850-0_1
http://books.google.de/books?id=Nmc4wEaLXFEC
http://books.google.de/books?id=Nmc4wEaLXFEC
https://doi.org/10.1016/0004-3702(90)90055-5
https://doi.org/10.1016/0004-3702(90)90055-5
https://doi.org/10.1016/0004-3702(90)90055-5
https://doi.org/10.1016/0004-3702(90)90055-5
https://doi.org/10.1109/SEFM.2009.13
https://doi.org/10.1109/SEFM.2009.13
https://doi.org/10.1109/SEFM.2009.13

Bibliography

Conchon, Sylvain, Amit Goel, Sava Krstic, Alain Mebsout, and Fatiha Zaïdi
(2012). “Cubicle: A Parallel SMT-Based Model Checker for Parameterized
Systems - Tool Paper”. In: CAV, pp. 718–724 (cited on p. 240).

Cossentino, Massimo (2005). “From requirements to code with the PASSI
methodology”. In: Agent-oriented methodologies 3690, pp. 79–106 (cited on
p. 98).

Courcelle, B. (1983). “Fundamental properties of in�nite trees”. In: 25, pp. 95–
169 (cited on p. 43).

Criado, Natalia and Jose M. Such (2017). “Norm Monitoring Under Partial
Action Observability”. In: IEEE Trans. Cybernetics 47.2, pp. 270–282. doi:
10.1109/TCYB.2015.2513430. url: https://doi.org/10.1109/TCYB.
2015.2513430 (cited on pp. 100, 101).

Dalpiaz, Fabiano, Amit K. Chopra, Paolo Giorgini, and John Mylopoulos (2010).
“Adaptation in Open Systems: Giving Interaction Its Rightful Place”. In: Proc.
of Conceptual Modeling - ER 2010, 29th International Conference on Concep-
tual Modeling. Ed. by Je�rey Parsons, Motoshi Saeki, Peretz Shoval, Carson
C. Woo, and Yair Wand. Vol. 6412. LNCS. Springer, pp. 31–45. doi: 10.1007/
978-3-642-16373-9_3. url: https://doi.org/10.1007/978-3-642-
16373-9_3 (cited on pp. 59, 63).

Dastani, Mehdi, M. Birna van Riemsdijk, and John-Jules Ch. Meyer (2005).
“Programming Multi-Agent Systems in 3APL”. In:Multi-Agent Programming:
Languages, Platforms and Applications. Ed. by Rafael H. Bordini, Mehdi Dast-
ani, Jürgen Dix, and Amal El Fallah-Seghrouchni. Vol. 15. Multiagent Systems,
Arti�cial Societies, and Simulated Organizations. Springer, pp. 39–67 (cited
on p. 21).

David, Alexandre, Kim G. Larsen, Axel Legay, Marius Mikuăionis, and Danny
BØgsted Poulsen (Aug. 2015). “Uppaal SMC Tutorial”. In: Int. J. Softw. Tools
Technol. Transf. 17.4, pp. 397–415. issn: 1433-2779. doi: 10.1007/s10009-
014-0361-y. url: http://dx.doi.org/10.1007/s10009-014-0361-y
(cited on p. 65).

Delgado, Nelly, Ann Quiroz Gates, and Steve Roach (Dec. 2004). “A Taxonomy
and Catalog of Runtime Software-Fault Monitoring Tools”. In: IEEE Trans.
Softw. Eng. 30.12, pp. 859–872. issn: 0098-5589. doi: 10.1109/TSE.2004.
91. url: http://dx.doi.org/10.1109/TSE.2004.91 (cited on pp. 3, 29).

Deniélou, P.-M. and N. Yoshida (2012). “Multiparty Session Types Meet Com-
municating Automata”. In: ESOP’12 (part of ETAPS 2012). LNCS. Springer
(cited on pp. 51, 123).

Deniélou, Pierre-Malo and Nobuko Yoshida (2012). “Multiparty Session Types
Meet Communicating Automata”. In: Proc. of ESOP 2012. Vol. 7211. LNCS.
Springer, pp. 194–213 (cited on pp. 98, 107).

Dennis, L. A., M. Fisher, N. Lincoln, A. Lisitsa, and S. M. Veres (2010). “De-
clarative Abstractions for Agent Based Hybrid Control Systems”. In: Proc.
8th Int. Workshop on Declarative Agent Languages and Technologies (DALT),
pp. 96–111 (cited on p. 182).

259

https://doi.org/10.1109/TCYB.2015.2513430
https://doi.org/10.1109/TCYB.2015.2513430
https://doi.org/10.1109/TCYB.2015.2513430
https://doi.org/10.1007/978-3-642-16373-9_3
https://doi.org/10.1007/978-3-642-16373-9_3
https://doi.org/10.1007/978-3-642-16373-9_3
https://doi.org/10.1007/978-3-642-16373-9_3
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
http://dx.doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1109/TSE.2004.91
https://doi.org/10.1109/TSE.2004.91
http://dx.doi.org/10.1109/TSE.2004.91

Bibliography

Dennis, Louise A. (2017). Gwendolen Semantics: 2017. Tech. rep. ULCS-17-001.
University of Liverpool, Department of Computer Science (cited on pp. 182,
183).

Dennis, Louise A (2018). “The MCAPL Framework including the Agent Infra-
structure Layer and Agent Java Path�nder”. In: The Journal of Open Source
Software 3.24 (cited on p. 180).

Dennis, Louise A. and Berndt Farwer (2008). “Gwendolen: A BDI Language
for Veri�able Agents”. In: University of Aberdeen (cited on p. 21).

Dennis, Louise A., Michael Fisher, Matthew P. Webster, and Rafael H. Bordini
(2012). “Model checking agent programming languages”. In: Autom. Softw.
Eng. 19.1, pp. 5–63. doi: 10.1007/s10515-011-0088-x. url: https:
//doi.org/10.1007/s10515-011-0088-x (cited on pp. 35, 180, 182).

Dennis, Louise A., Michael Fisher, Nicholas K. Lincoln, Alexei Lisitsa, and
Sandor M. Veres (2014). “Practical veri�cation of decision-making in agent-
based autonomous systems”. English. In: Automated Software Engineering,
pp. 1–55. issn: 0928-8910. doi: 10.1007/s10515-014-0168-9. url:
http://dx.doi.org/10.1007/s10515-014-0168-9 (cited on pp. 179,
182).

Dennis, Louise A. et al. (2016). “Agent-Based Autonomous Systems and Ab-
straction Engines: Theory Meets Practice”. In: Towards Autonomous Robotic
Systems. Ed. by Lyuba Alboul, Dana Damian, and Jonathan M. Aitken. Cham:
Springer International Publishing, pp. 75–86. isbn: 978-3-319-40379-3 (cited
on pp. 182, 184).

Desai, Ankush, Tommaso Dreossi, and Sanjit A. Seshia (2017). “Combining
Model Checking and Runtime Veri�cation for Safe Robotics”. In: RV. Vol. 10548.
Lecture Notes in Computer Science. Springer, pp. 172–189 (cited on p. 181).

Desai, Ankush, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Ra-
jamani, and Damien Zu�erey (2013). “P: safe asynchronous event-driven
programming”. In: PLDI. ACM, pp. 321–332 (cited on p. 181).

Desai, N., A. U. Mallya, A. K. Chopra, and M. P. Singh (2005a). “Interaction pro-
tocols as design abstractions for business processes”. In: IEEE Transactions
on Software Engineering 31.12, pp. 1015–1027 (cited on p. 63).

Desai, Nirmit, Amit K. Chopra, and Munindar P. Singh (Oct. 2009). “Amoeba:
A Methodology for Modeling and Evolving Cross-organizational Business
Processes”. In: ACM Trans. Softw. Eng. Methodol. 19.2, 6:1–6:45. issn: 1049-
331X. doi: 10.1145/1571629.1571632. url: http://doi.acm.org/10.
1145/1571629.1571632 (cited on p. 63).

Desai, Nirmit and Munindar P. Singh (2008). “On the Enactability of Busi-
ness Protocols”. In: Proc. of the Twenty-Third AAAI Conference on Arti�-
cial Intelligence, AAAI 2008. Ed. by Dieter Fox and Carla P. Gomes. AAAI
Press, pp. 1126–1131. url: http://www.aaai.org/Library/AAAI/2008/
aaai08-178.php (cited on pp. 63, 102).

Desai, Nirmit, Ashok U. Mallya, Amit K. Chopra, and Munindar P. Singh
(2005b). “Interaction Protocols as Design Abstractions for Business Pro-
cesses”. In: IEEE Trans. Software Eng. 31.12, pp. 1015–1027. doi: 10.1109/

260

https://doi.org/10.1007/s10515-011-0088-x
https://doi.org/10.1007/s10515-011-0088-x
https://doi.org/10.1007/s10515-011-0088-x
https://doi.org/10.1007/s10515-014-0168-9
http://dx.doi.org/10.1007/s10515-014-0168-9
https://doi.org/10.1145/1571629.1571632
http://doi.acm.org/10.1145/1571629.1571632
http://doi.acm.org/10.1145/1571629.1571632
http://www.aaai.org/Library/AAAI/2008/aaai08-178.php
http://www.aaai.org/Library/AAAI/2008/aaai08-178.php
https://doi.org/10.1109/TSE.2005.140
https://doi.org/10.1109/TSE.2005.140

Bibliography

TSE.2005.140. url: https://doi.org/10.1109/TSE.2005.140 (cited
on p. 98).

Desai, Nirmit, Amit K. Chopra, Matthew Arrott, Bill Specht, and Munindar P.
Singh (2007a). “Engineering Foreign Exchange Processes via Commitment
Protocols”. In: Proc. of the 2007 IEEE International Conference on Services
Computing (SCC 2007). IEEE Computer Society, pp. 514–521. doi: 10.1109/
SCC.2007.58. url: https://doi.org/10.1109/SCC.2007.58 (cited on
p. 63).

Desai, Nirmit, Zhengang Cheng, Amit K. Chopra, and Munindar P. Singh
(2007b). “Toward Veri�cation of Commitment Protocols and Their Com-
positions”. In: Proc. of the 6th International Joint Conference on Autonomous
Agents and Multiagent Systems. AAMAS ’07. Honolulu, Hawaii: ACM, 33:1–
33:3. isbn: 978-81-904262-7-5. doi: 10.1145/1329125.1329165. url:
http://doi.acm.org/10.1145/1329125.1329165 (cited on p. 63).

Dezani-Ciancaglini, Mariangiola, Nobuko Yoshida, Alexander Ahern, and
Sophia Drossopoulou (2005). “Trustworthy Global Computing: International
Symposium, TGC 2005, Edinburgh, UK, April 7-9, 2005. Revised Selected
Papers”. In: Berlin, Heidelberg: Springer Berlin Heidelberg. Chap. A Dis-
tributed Object-Oriented Language with Session Types, pp. 299–318. isbn:
978-3-540-31483-7. doi: 10.1007/11580850_16. url: http://dx.doi.
org/10.1007/11580850_16 (cited on p. 162).

Dezani-Ciancaglini, Mariangiola, Dimitris Mostrous, Nobuko Yoshida, and
Sophia Drossopoulou (2006). “Session Types for Object-Oriented Languages”.
In: ECOOP 2006 - Object-Oriented Programming, 20th European Conference,
Nantes, France, July 3-7, 2006, Proceedings, pp. 328–352. doi: 10.1007/
11785477_20. url: http://dx.doi.org/10.1007/11785477_20 (cited
on p. 162).

Dezani-Ciancaglini, Mariangiola, Elena Giachino, Sophia Drossopoulou, and
Nobuko Yoshida (2007). “Formal Methods for Components and Objects:
5th International Symposium, FMCO 2006, Amsterdam, The Netherlands,
November 7-10, 2006, Revised Lectures”. In: Berlin, Heidelberg: Springer Ber-
lin Heidelberg. Chap. Bounded Session Types for Object Oriented Languages,
pp. 207–245. isbn: 978-3-540-74792-5. doi: 10.1007/978-3-540-74792-
5_10. url: http://dx.doi.org/10.1007/978-3-540-74792-5_10
(cited on p. 162).

Dhaussy, Philippe, Jean-Charles Roger, and Frédéric Boniol (2011). “Reducing
State Explosion with Context Modeling for Model-Checking”. In: Proc. of the
13th IEEE International Symposium on High-Assurance Systems Engineering,
HASE 2011, pp. 130–137. doi: 10 . 1109 / HASE . 2011 . 24. url: https :
//doi.org/10.1109/HASE.2011.24 (cited on p. 181).

El Kholy, Warda, Jamal Bentahar, Mohamed El Menshawy, Hongyang Qu,
and Rachida Dssouli (2014). “Modeling and verifying choreographed multi-
agent-based web service compositions regulated by commitment protocols”.
In: Expert systems with applications 41.16, pp. 7478–7494 (cited on p. 63).

261

https://doi.org/10.1109/TSE.2005.140
https://doi.org/10.1109/TSE.2005.140
https://doi.org/10.1109/TSE.2005.140
https://doi.org/10.1109/SCC.2007.58
https://doi.org/10.1109/SCC.2007.58
https://doi.org/10.1109/SCC.2007.58
https://doi.org/10.1145/1329125.1329165
http://doi.acm.org/10.1145/1329125.1329165
https://doi.org/10.1007/11580850_16
http://dx.doi.org/10.1007/11580850_16
http://dx.doi.org/10.1007/11580850_16
https://doi.org/10.1007/11785477_20
https://doi.org/10.1007/11785477_20
http://dx.doi.org/10.1007/11785477_20
https://doi.org/10.1007/978-3-540-74792-5_10
https://doi.org/10.1007/978-3-540-74792-5_10
http://dx.doi.org/10.1007/978-3-540-74792-5_10
https://doi.org/10.1109/HASE.2011.24
https://doi.org/10.1109/HASE.2011.24
https://doi.org/10.1109/HASE.2011.24

Bibliography

El-Menshawy, Mohamed, Jamal Bentahar, and Rachida Dssouli (2011). “Model
Checking Commitment Protocols”. In: Proc. of the 24th International Con-
ference on Industrial Engineering and Other Applications of Applied Intelli-
gent Systems, IEA/AIE 2011. Ed. by Kishan G. Mehrotra, Chilukuri K. Mo-
han, Jae C. Oh, Pramod K. Varshney, and Moonis Ali. Vol. 6704. LNCS.
Springer, pp. 37–47. doi: 10.1007/978-3-642-21827-9_5. url: https:
//doi.org/10.1007/978-3-642-21827-9_5 (cited on p. 63).

Endriss, Ulrich, Nicolas Maudet, Fariba Sadri, and Francesca Toni (2003). “Pro-
tocol Conformance for Logic-based Agents”. In: IJCAI. Morgan Kaufmann,
pp. 679–684 (cited on p. 147).

Euzenat, Jérôme and Pavel Shvaiko (2007). Ontology matching. Springer. doi:
10.1007/978-3-540-49612-0. url: https://doi.org/10.1007/978-
3-540-49612-0 (cited on p. 145).

Falcone, Yliès (2010). “You Should Better Enforce Than Verify”. In: Runtime
Veri�cation - First International Conference, RV 2010, St. Julians,Malta, Novem-
ber 1-4, 2010. Proceedings. Ed. by Howard Barringer, Yliès Falcone, Bernd
Finkbeiner, Klaus Havelund, Insup Lee, Gordon J. Pace, Grigore Rosu, Oleg
Sokolsky, and Nikolai Tillmann. Vol. 6418. Lecture Notes in Computer Sci-
ence. Springer, pp. 89–105. doi: 10.1007/978-3-642-16612-9_9. url:
https://doi.org/10.1007/978-3-642-16612-9_9 (cited on p. 53).

Falcone, Yliès, Tom Cornebize, and Jean-Claude Fernandez (2014). “E�cient
and Generalized Decentralized Monitoring of Regular Languages”. In: Formal
Techniques for Distributed Objects, Components, and Systems: 34th IFIP WG
6.1 International Conference, FORTE 2014. Proceedings. Ed. by Erika Ábrahám
and Catuscia Palamidessi. Springer, pp. 66–83. isbn: 978-3-662-43613-4.
doi: 10.1007/978-3-662-43613-4_5. url: http://dx.doi.org/10.
1007/978-3-662-43613-4_5 (cited on pp. 126, 128).

Ferrando, Angelo (2015). “Parametric protocol-driven agents and their in-
tegration in JADE”. In: Proc. of CILC 2015, the 30th Italian Conference on
Computational Logic. Ed. by Davide Ancona, Marco Maratea, and Viviana
Mascardi. Vol. 1459. CEUR Workshop Proceedings. CEUR-WS.org, pp. 72–84.
url: http://ceur-ws.org/Vol-1459/paper26.pdf (cited on p. 234).

– (2016). “Automatic Partitions Extraction to Distribute the Runtime Veri�ca-
tion of a Global Speci�cation”. In: Proceedings of the Doctoral Consortium of
AI*IA 2016 co-located with the 15th International Conference of the Italian As-
sociation for Arti�cial Intelligence (AI*IA 2016), Genova, Italy, November 29,
2016. Ed. by Viviana Mascardi and Ilaria Torre. Vol. 1769. CEUR Workshop
Proceedings. CEUR-WS.org, pp. 40–45. url: http://ceur-ws.org/Vol-
1769/paper07.pdf (cited on p. 9).

– (2017). “RIVERtools: an IDE for RuntIme VERi�cation of MASs, and Beyond”.
In: PRIMA Demo Track 2017 (cited on pp. 10, 195).

– (2019). “The early bird catches the worm: First verify, then monitor!” In:
Science of Computer Programming 172, pp. 160 –179. issn: 0167-6423. doi:
https://doi.org/10.1016/j.scico.2018.11.008. url: http://

262

https://doi.org/10.1007/978-3-642-21827-9_5
https://doi.org/10.1007/978-3-642-21827-9_5
https://doi.org/10.1007/978-3-642-21827-9_5
https://doi.org/10.1007/978-3-540-49612-0
https://doi.org/10.1007/978-3-540-49612-0
https://doi.org/10.1007/978-3-540-49612-0
https://doi.org/10.1007/978-3-642-16612-9_9
https://doi.org/10.1007/978-3-642-16612-9_9
https://doi.org/10.1007/978-3-662-43613-4_5
http://dx.doi.org/10.1007/978-3-662-43613-4_5
http://dx.doi.org/10.1007/978-3-662-43613-4_5
http://ceur-ws.org/Vol-1459/paper26.pdf
http://ceur-ws.org/Vol-1769/paper07.pdf
http://ceur-ws.org/Vol-1769/paper07.pdf
https://doi.org/https://doi.org/10.1016/j.scico.2018.11.008
http://www.sciencedirect.com/science/article/pii/S0167642318304349
http://www.sciencedirect.com/science/article/pii/S0167642318304349

Bibliography

www.sciencedirect.com/science/article/pii/S0167642318304349

(cited on pp. 10, 159).
Ferrando, Angelo, Davide Ancona, and Viviana Mascardi (2016). “Monitoring

Patients with Hypoglycemia Using Self-adaptive Protocol-Driven Agents: A
Case Study”. In: Proc. of Engineering Multi-Agent Systems - 4th International
Workshop, EMAS 2016, Revised, Selected, and Invited Papers. Ed. by Matteo
Baldoni, Jörg P. Müller, Ingrid Nunes, and Rym Zalila-Wenkstern. Vol. 10093.
LNCS. Springer, pp. 39–58. doi: 10.1007/978-3-319-50983-9_3. url:
http://dx.doi.org/10.1007/978-3-319-50983-9_3 (cited on pp. 11,
126, 219, 221, 224).

– (2017). “Decentralizing MAS Monitoring with DecAMon”. In: Proc. of the 16th
Conference on Autonomous Agents andMultiAgent Systems, AAMAS 2017. Ed.
by Kate Larson, Michael Winiko�, Sanmay Das, and Edmund H. Durfee.
ACM, pp. 239–248. url: http://dl.acm.org/citation.cfm?id=
3091164 (cited on pp. 9, 110).

Ferrando, Angelo, Louise A. Dennis, Davide Ancona, Michael Fisher, and Vivi-
ana Mascardi (2018a). “Recognising Assumption Violations in Autonomous
Systems Veri�cation”. In: Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm,
Sweden, July 10-15, 2018. Ed. by Elisabeth André, Sven Koenig, Mehdi Dast-
ani, and Gita Sukthankar. International Foundation for Autonomous Agents
and Multiagent Systems Richland, SC, USA / ACM, pp. 1933–1935. url:
http://dl.acm.org/citation.cfm?id=3238028 (cited on pp. 10, 178).

– (2018b). “Verifying and Validating Autonomous Systems: Towards an Integ-
rated Approach”. In: Runtime Veri�cation - 18th International Conference, RV
2018, Limassol, Cyprus, November 10-13, 2018, Proceedings. Ed. by Christian
Colombo and Martin Leucker. Vol. 11237. Lecture Notes in Computer Science.
Springer, pp. 263–281. doi: 10.1007/978-3-030-03769-7_15. url:
https://doi.org/10.1007/978-3-030-03769-7_15 (cited on p. 178).

Finin, Tim, Richard Fritzson, Don McKay, and Robin McEntire (1994). “KQML
As an Agent Communication Language”. In: Proc. of the Third International
Conference on Information and Knowledge Management. CIKM ’94. Gaith-
ersburg, Maryland, USA: ACM, pp. 456–463. isbn: 0-89791-674-3. doi:
10.1145/191246.191322. url: http://doi.acm.org/10.1145/
191246.191322 (cited on p. 18).

Fisher, Michael and Chiara Ghidini (2010). “Executable speci�cations of resource-
bounded agents”. In:Autonomous Agents andMulti-Agent Systems 21.3, pp. 368–
396. doi: 10.1007/s10458-009-9105-x. url: https://doi.org/10.
1007/s10458-009-9105-x (cited on p. 21).

Fisher, Michael and Anthony Hepple (2009). “Executing Logical Agent Speci�c-
ations”. In: Multi-Agent Programming, Languages, Tools and Applications.
Ed. by Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah-
Seghrouchni. Springer, pp. 1–27. doi: 10.1007/978-0-387-89299-3_1.
url: https://doi.org/10.1007/978-0-387-89299-3_1 (cited on
p. 21).

263

http://www.sciencedirect.com/science/article/pii/S0167642318304349
http://www.sciencedirect.com/science/article/pii/S0167642318304349
https://doi.org/10.1007/978-3-319-50983-9_3
http://dx.doi.org/10.1007/978-3-319-50983-9_3
http://dl.acm.org/citation.cfm?id=3091164
http://dl.acm.org/citation.cfm?id=3091164
http://dl.acm.org/citation.cfm?id=3238028
https://doi.org/10.1007/978-3-030-03769-7_15
https://doi.org/10.1007/978-3-030-03769-7_15
https://doi.org/10.1145/191246.191322
http://doi.acm.org/10.1145/191246.191322
http://doi.acm.org/10.1145/191246.191322
https://doi.org/10.1007/s10458-009-9105-x
https://doi.org/10.1007/s10458-009-9105-x
https://doi.org/10.1007/s10458-009-9105-x
https://doi.org/10.1007/978-0-387-89299-3_1
https://doi.org/10.1007/978-0-387-89299-3_1

Bibliography

Fisher, Michael and Michael Wooldridge (1997). “On the Formal Speci�cation
and Veri�cation of Multi-Agent Systems”. In: Int. J. Cooperative Inf. Syst. 6.1,
pp. 37–66 (cited on p. 3).

Fornara, Nicoletta and Marco Colombetti (2003). “Protocol speci�cation us-
ing a commitment based ACL”. In: Proc. of the 2003 Workshop on Agent
Communication Languages. Vol. 2922. LNCS. Springer, pp. 108–127 (cited on
p. 63).

Foundation for Intelligent Physical Agents (2001). “FIPA English Auction
Interaction Protocol Speci�cation”. http : / / www . fipa . org / specs /
fipa00031/XC00031F.pdf (cited on p. 74).

Fraigniaud, Pierre, Sergio Rajsbaum, and Corentin Travers (2014). “On the
Number of Opinions Needed for Fault-Tolerant Run-Time Monitoring in
Distributed Systems”. In: Runtime Veri�cation: 5th International Conference,
RV 2014. Proceedings. Ed. by Borzoo Bonakdarpour and Scott A. Smolka.
Springer, pp. 92–107. isbn: 978-3-319-11164-3. doi: 10.1007/978-3-319-
11164-3_9. url: http://dx.doi.org/10.1007/978-3-319-11164-
3_9 (cited on p. 128).

Fraigniaud, Pierre, Sergio Rajsbaum, Matthieu Roy, and Corentin Travers (2014).
“The Opinion Number of Set-Agreement”. In: Principles of Distributed Sys-
tems: 18th International Conference, OPODIS 2014. Proceedings. Ed. by Marcos
K. Aguilera, Leonardo Querzoni, and Marc Shapiro. Springer, pp. 155–170.
isbn: 978-3-319-14472-6. doi: 10.1007/978-3-319-14472-6_11. url:
http://dx.doi.org/10.1007/978-3-319-14472-6_11 (cited on p. 128).

García-Ojeda, Juan C., Scott A. DeLoach, and Robby (2009). “AgentTool III:
from process de�nition to code generation”. In: Proc. of AAMAS 2009. IFAA-
MAS, pp. 1393–1394. doi: 10.1145/1558109.1558311. url: http://doi.
acm.org/10.1145/1558109.1558311 (cited on p. 98).

Gay, Simon J., Vasco T. Vasconcelos, António Ravara, Nils Gesbert, and Al-
exandre Z. Caldeira (Jan. 2010). “Modular Session Types for Distributed
Object-oriented Programming”. In: SIGPLAN Not. 45.1, pp. 299–312. issn:
0362-1340. doi: 10.1145/1707801.1706335. url: http://doi.acm.
org/10.1145/1707801.1706335 (cited on p. 162).

Gensini, Gian Franco, Camilla Alderighi, Ra�aele Rasoini, Marco Mazzanti,
and Giancarlo Casolo (2017). “Value of Telemonitoring and Telemedicine in
Heart Failure Management”. In: Cardiac Failure Review 3.2 (cited on p. 220).

Gerasimou, Simos, Radu Calinescu, Stepan Shevtsov, and Danny Weyns (2017).
“UNDERSEA: An Exemplar for Engineering Self-Adaptive Unmanned Under-
water Vehicles”. In: Proc. of the 12th IEEE/ACM International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS@ICSE
2017. IEEE Computer Society, pp. 83–89. doi: 10.1109/SEAMS.2017.19.
url: https://doi.org/10.1109/SEAMS.2017.19 (cited on p. 66).

Giordano, Laura and Alberto Martelli (2007). “Verifying Agent Conformance
with Protocols Speci�ed in a Temporal Action Logic”. In: AI*IA. Vol. 4733.
LNCS, pp. 145–156 (cited on p. 147).

264

http://www.fipa.org/specs/fipa00031/XC00031F.pdf
http://www.fipa.org/specs/fipa00031/XC00031F.pdf
https://doi.org/10.1007/978-3-319-11164-3_9
https://doi.org/10.1007/978-3-319-11164-3_9
http://dx.doi.org/10.1007/978-3-319-11164-3_9
http://dx.doi.org/10.1007/978-3-319-11164-3_9
https://doi.org/10.1007/978-3-319-14472-6_11
http://dx.doi.org/10.1007/978-3-319-14472-6_11
https://doi.org/10.1145/1558109.1558311
http://doi.acm.org/10.1145/1558109.1558311
http://doi.acm.org/10.1145/1558109.1558311
https://doi.org/10.1145/1707801.1706335
http://doi.acm.org/10.1145/1707801.1706335
http://doi.acm.org/10.1145/1707801.1706335
https://doi.org/10.1109/SEAMS.2017.19
https://doi.org/10.1109/SEAMS.2017.19

Bibliography

Gluch, David, Santiago Comella-Dorda, John Hudak, Grace Lewis, and Chuck
Weinstock (Feb. 2019). “Model-Based Veri�cation: Guidelines for Generating
Expected Properties”. In: (cited on p. 28).

Gottlob, Georg (2012). “On minimal constraint networks”. In: Artif. Intell. 191-
192, pp. 42–60. doi: 10.1016/j.artint.2012.07.006. url: http:
//dx.doi.org/10.1016/j.artint.2012.07.006 (cited on p. 126).

Gruber, Thomas R. (June 1993). “A Translation Approach to Portable Ontology
Speci�cations”. In: Knowl. Acquis. 5.2, pp. 199–220. issn: 1042-8143. doi:
10.1006/knac.1993.1008. url: http://dx.doi.org/10.1006/knac.
1993.1008 (cited on p. 19).

Gruber, Tom (2009). “Ontology”. In: Encyclopedia of Database Systems. Ed. by
Ling Liu and M. Tamer Özsu. Springer US, pp. 1963–1965. doi: 10.1007/978-
0-387-39940-9_1318. url: https://doi.org/10.1007/978-0-387-
39940-9_1318 (cited on p. 19).

Gui, Lin, Jun Sun, Yang Liu, Yuanjie Si, Jin Song Dong, and Xinyu Wang (2013).
“Combining model checking and testing with an application to reliability
prediction and distribution”. In: International Symposium on Software Testing
and Analysis, ISSTA ’13, Lugano, Switzerland, July 15-20, 2013, pp. 101–111.
doi: 10.1145/2483760.2483779. url: http://doi.acm.org/10.1145/
2483760.2483779 (cited on pp. 10, 162).

Günay, Akin, Yang Liu, and Jie Zhang (Sept. 2016). “PROMOCA: Probabilistic
Modeling and Analysis of Agents in Commitment Protocols”. In: J. Artif.
Int. Res. 57.1, pp. 465–508. issn: 1076-9757. url: http://dl.acm.org/
citation.cfm?id=3176748.3176759 (cited on p. 63).

Havelund, K., G. Reger, and G. Rosu (2018). “Runtime Veri�cation – Past
Experiences and Future Projections”. In: Special issue in celebration of issue
number 10,000 of Lecture Notes in Computer Science. Vol. 10000. Lecture
Notes in Computer Science (cited on p. 80).

Havelund, Klaus (1999). “Java PathFinder, A Translator from Java to Promela”.
In: Theoretical and Practical Aspects of SPIN Model Checking, 5th and 6th
International SPIN Workshops, Trento, Italy, July 5, 1999, Toulouse, France,
September 21 and 24 1999, Proceedings. Ed. by Dennis Dams, Rob Gerth, Stefan
Leue, and Mieke Massink. Vol. 1680. Lecture Notes in Computer Science.
Springer, p. 152. doi: 10.1007/3-540-48234-2_11. url: https://doi.
org/10.1007/3-540-48234-2_11 (cited on p. 35).

Havelund, Klaus, Michael R. Lowry, and John Penix (2001). “Formal Analysis
of a Space-Craft Controller Using SPIN”. In: IEEE Trans. Software Eng. 27.8,
pp. 749–765 (cited on p. 3).

Havelund, Klaus and Thomas Pressburger (2000). “Model Checking JAVA
Programs using JAVA PathFinder”. In: STTT 2.4, pp. 366–381. doi: 10.1007/
s100090050043. url: https://doi.org/10.1007/s100090050043
(cited on p. 35).

Havelund, Klaus, Martin Leucker, Martin Sachenbacher, Oleg Sokolsky, and
Brian C. Williams, eds. (2010). Runtime Veri�cation, Diagnosis, Planning and
Control for Autonomous Systems, 07.11. - 12.11.2010. Vol. 10451. Dagstuhl Sem-

265

https://doi.org/10.1016/j.artint.2012.07.006
http://dx.doi.org/10.1016/j.artint.2012.07.006
http://dx.doi.org/10.1016/j.artint.2012.07.006
https://doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1006/knac.1993.1008
https://doi.org/10.1007/978-0-387-39940-9_1318
https://doi.org/10.1007/978-0-387-39940-9_1318
https://doi.org/10.1007/978-0-387-39940-9_1318
https://doi.org/10.1007/978-0-387-39940-9_1318
https://doi.org/10.1145/2483760.2483779
http://doi.acm.org/10.1145/2483760.2483779
http://doi.acm.org/10.1145/2483760.2483779
http://dl.acm.org/citation.cfm?id=3176748.3176759
http://dl.acm.org/citation.cfm?id=3176748.3176759
https://doi.org/10.1007/3-540-48234-2_11
https://doi.org/10.1007/3-540-48234-2_11
https://doi.org/10.1007/3-540-48234-2_11
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/s100090050043

Bibliography

inar Proceedings. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Ger-
many (cited on p. 80).

Hendler, James (Mar. 2001). “Agents and the Semantic Web”. In: IEEE Intelligent
Systems 16.2, pp. 30–37. issn: 1541-1672. doi: 10.1109/5254.920597. url:
http://dx.doi.org/10.1109/5254.920597 (cited on p. 19).

Henzinger, Thomas A. (1996). “The Theory of Hybrid Automata”. In: Proc. of the
11th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 278–
292 (cited on p. 181).

Herlihy, Maurice (Jan. 1991). “Wait-free Synchronization”. In: ACM Trans. Pro-
gram. Lang. Syst. 13.1, pp. 124–149. issn: 0164-0925. doi: 10.1145/114005.
102808. url: http://doi.acm.org/10.1145/114005.102808 (cited on
p. 128).

Higuera, Colin de la (2010). Grammatical Inference: Learning Automata and
Grammars. New York, NY, USA: Cambridge University Press. isbn: 0521763169,
9780521763165 (cited on p. 244).

Hindriks, Koen V., Frank S. de Boer, Wiebe van der Hoek, and John-Jules
Ch. Meyer (1997). “Formal Semantics for an Abstract Agent Programming
Language”. In: Intelligent Agents IV, Agent Theories, Architectures, and Lan-
guages, 4th InternationalWorkshop, ATAL ’97, Providence, Rhode Island, USA,
July 24-26, 1997, Proceedings. Ed. by Munindar P. Singh, Anand S. Rao, and
Michael Wooldridge. Vol. 1365. Lecture Notes in Computer Science. Springer,
pp. 215–229. doi: 10.1007/BFb0026761. url: https://doi.org/10.
1007/BFb0026761 (cited on p. 21).

– (2000). “Agent Programming with Declarative Goals”. In: Intelligent Agents
VII. Agent Theories Architectures and Languages, 7th International Workshop,
ATAL 2000, Boston, MA, USA, July 7-9, 2000, Proceedings. Ed. by Cristiano
Castelfranchi and Yves Lespérance. Vol. 1986. Lecture Notes in Computer
Science. Springer, pp. 228–243. doi: 10.1007/3-540-44631-1_16. url:
https://doi.org/10.1007/3-540-44631-1_16 (cited on p. 21).

Hinrichs, Timothy L., A. Prasad Sistla, and Lenore D. Zuck (2014). “Model
Check What You Can, Runtime Verify the Rest”. In: HOWARD-60. Vol. 42.
EPiC Series in Computing. EasyChair, pp. 234–244 (cited on p. 160).

Holzmann, Gerard J. (1991). Design and Validation of Computer Protocols. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc. isbn: 0-13-539925-4 (cited on
pp. 161, 174).

– (1997). “The Model Checker SPIN”. In: IEEE Trans. Software Eng. 23.5, pp. 279–
295. doi: 10.1109/32.588521. url: https://doi.org/10.1109/32.
588521 (cited on pp. 161, 174).

– (2002). “Software Analysis and Model Checking”. In:Computer Aided Veri�c-
ation, 14th International Conference, CAV 2002,Copenhagen, Denmark, July
27-31, 2002, Proceedings. Ed. by Ed Brinksma and Kim Guldstrand Larsen.
Vol. 2404. Lecture Notes in Computer Science. Springer, pp. 1–16. doi:
10.1007/3-540-45657-0_1. url: https://doi.org/10.1007/3-540-
45657-0_1 (cited on p. 160).

266

https://doi.org/10.1109/5254.920597
http://dx.doi.org/10.1109/5254.920597
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/114005.102808
http://doi.acm.org/10.1145/114005.102808
https://doi.org/10.1007/BFb0026761
https://doi.org/10.1007/BFb0026761
https://doi.org/10.1007/BFb0026761
https://doi.org/10.1007/3-540-44631-1_16
https://doi.org/10.1007/3-540-44631-1_16
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/3-540-45657-0_1
https://doi.org/10.1007/3-540-45657-0_1
https://doi.org/10.1007/3-540-45657-0_1

Bibliography

Holzmann, Gerard J. (2004). The SPIN Model Checker - primer and reference
manual. Addison-Wesley. isbn: 978-0-321-22862-8 (cited on pp. 161, 174).

Honda, Kohei, Nobuko Yoshida, and Marco Carbone (2008). “Multiparty asyn-
chronous session types”. In: Proc. of POPL 2008. ACM, pp. 273–284 (cited on
p. 98).

Hopcroft, John E. and Je�rey D. Ullman (1969). Formal languages and their
relation to automata. Addison-Wesley series in computer science and in-
formation processing. Addison-Wesley (cited on p. 165).

Hu, Raymond, Nobuko Yoshida, and Kohei Honda (2008). “ECOOP 2008 –
Object-Oriented Programming: 22nd European Conference Paphos, Cyprus,
July 7-11, 2008 Proceedings”. In: Berlin, Heidelberg: Springer Berlin Heidel-
berg. Chap. Session-Based Distributed Programming in Java, pp. 516–541.
isbn: 978-3-540-70592-5. doi: 10.1007/978-3-540-70592-5_22. url:
http://dx.doi.org/10.1007/978-3-540-70592-5_22 (cited on p. 162).

Huget, Marc-Philippe and James Odell (2004). “Representing Agent Interac-
tion Protocols with Agent UML”. In: Proc. of AAMAS 2004. IEEE Computer
Society, pp. 1244–1245 (cited on p. 98).

“IEEE Standard for Software Veri�cation and Validation” (2005). In: IEEE Std
1012-2004 (Revision of IEEE Std 1012-1998), pp. 1–110. doi: 10.1109/IEEESTD.
2005.96278 (cited on p. 30).

Iftikhar, M. Usman and Danny Weyns (2012). “A Case Study on Formal Veri-
�cation of Self-Adaptive Behaviors in a Decentralized System”. In: Proc. of
the 11th International Workshop on Foundations of Coordination Languages
and Self Adaptation, FOCLASA 2012. Ed. by Natallia Kokash and António
Ravara. Vol. 91. EPTCS, pp. 45–62. doi: 10.4204/EPTCS.91.4. url:
https://doi.org/10.4204/EPTCS.91.4 (cited on pp. 65, 66).

Iftikhar, M Usman and Danny Weyns (2016). “Towards runtime statistical
model checking for self-adaptive systems”. Tech. Report CW 693, August
2016, Department of Computer Science, KU Leuven (cited on pp. 65, 66).

Iftikhar, M. Usman and Danny Weyns (2017). “ActivFORMS: A Runtime En-
vironment for Architecture-Based Adaptation with Guarantees”. In: Proc. of
the 2017 IEEE International Conference on Software Architecture Workshops,
ICSA Workshops 2017. IEEE, pp. 278–281. doi: 10.1109/ICSAW.2017.21.
url: https://doi.org/10.1109/ICSAW.2017.21 (cited on p. 65).

Iftikhar, Muhammad Usman, Gowri Sankar Ramachandran, Pablo Bollansée,
Danny Weyns, and Danny Hughes (2017). “DeltaIoT: A Self-Adaptive In-
ternet of Things Exemplar”. In: Proc. of the 12th IEEE/ACM International
Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems, SEAMS@ICSE 2017. IEEE Computer Society, pp. 76–82. doi: 10.1109/
SEAMS.2017.21. url: https://doi.org/10.1109/SEAMS.2017.21
(cited on p. 66).

Iglesia, Didac Gil de la and Danny Weyns (2015). “MAPE-K Formal Templates
to Rigorously Design Behaviors for Self-Adaptive Systems”. In: ACM Trans.
Auton. Adapt. Syst. 10.3, 15:1–15:31. doi: 10.1145/2724719. url: http:
//doi.acm.org/10.1145/2724719 (cited on p. 65).

267

https://doi.org/10.1007/978-3-540-70592-5_22
http://dx.doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1109/IEEESTD.2005.96278
https://doi.org/10.1109/IEEESTD.2005.96278
https://doi.org/10.4204/EPTCS.91.4
https://doi.org/10.4204/EPTCS.91.4
https://doi.org/10.1109/ICSAW.2017.21
https://doi.org/10.1109/ICSAW.2017.21
https://doi.org/10.1109/SEAMS.2017.21
https://doi.org/10.1109/SEAMS.2017.21
https://doi.org/10.1109/SEAMS.2017.21
https://doi.org/10.1145/2724719
http://doi.acm.org/10.1145/2724719
http://doi.acm.org/10.1145/2724719

Bibliography

Jennings, Nicholas R., Katia P. Sycara, and Michael Wooldridge (1998). “A
Roadmap of Agent Research and Development”. In: Autonomous Agents and
Multi-Agent Systems 1.1, pp. 7–38. doi: 10.1023/A:1010090405266. url:
http://dx.doi.org/10.1023/A:1010090405266 (cited on p. 16).

Jezewski, Janusz, Adam Pawlak, Krzysztof Horoba, Janusz Wrobel, Robert Cza-
banski, and Michal Jezewski (2016). “Selected design issues of the medical
cyber-physical system for telemonitoring pregnancy at home”. In: Micro-
processors and Microsystems 46.Part A, pp. 35 –43. issn: 0141-9331. doi:
https://doi.org/10.1016/j.micpro.2016.07.005. url: http://
www.sciencedirect.com/science/article/pii/S0141933116300874

(cited on p. 220).
Jiao, Wenpin and Yanchun Sun (2016). “Self-adaptation of multi-agent systems

in dynamic environments based on experience exchanges”. In: Journal of
Systems and Software 122.Supplement C, pp. 165 –179. issn: 0164-1212. doi:
https://doi.org/10.1016/j.jss.2016.09.025. url: http://
www.sciencedirect.com/science/article/pii/S0164121216301844

(cited on p. 59).
Joshi, Yogi, Guy Martin Tchamgoue, and Sebastian Fischmeister (2017). “Runtime

veri�cation of LTL on lossy traces”. In: Proc. of SAC 2017. ACM, pp. 1379–1386
(cited on pp. 80, 101).

Kacprzak, Magdalena, Alessio Lomuscio, and Wojciech Penczek (2004). “Veri-
�cation of Multiagent Systems via Unbounded Model Checking”. In: 3rd
International Joint Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2004), 19-23 August 2004, New York, NY, USA. IEEE Computer
Society, pp. 638–645. doi: 10.1109/AAMAS.2004.10086. url: http:
//doi.ieeecomputersociety.org/10.1109/AAMAS.2004.10086 (cited
on p. 35).

Kamali, Maryam, Louise A. Dennis, Owen McAree, Michael Fisher, and Sandor
M. Veres (2017). “Formal veri�cation of autonomous vehicle platooning”.
In: Science of Computer Programming, pp. –. issn: 0167-6423. doi: https:
//doi.org/10.1016/j.scico.2017.05.006. url: http://www.
sciencedirect.com/science/article/pii/S0167642317301168 (cited
on p. 184).

Kavantzas, Nickolas, David Burdett, Gregory Ritzinger, Tony Fletcher, Yves La-
fon, and Charlton Barreto (2005). “Web Services Choreography Description
Language v. 1.0” (cited on p. 146).

King, Thomas C., Akin Günay, Amit K. Chopra, and Munindar P. Singh (2017).
“Tosca: Operationalizing Commitments Over Information Protocols”. In:
Proc. of the Twenty-Sixth International Joint Conference on Arti�cial Intel-
ligence, IJCAI 2017. Ed. by Carles Sierra. ijcai.org, pp. 256–264. doi: 10.
24963/ijcai.2017/37. url: https://doi.org/10.24963/ijcai.
2017/37 (cited on pp. 61, 63).

Kraai, Imke, Arjen de Vries, Karin Vermeulen, Vincent van Deursen, Martje
van der Wal, Richard de Jong, René van Dijk, Tiny Jaarsma, Hans Hillege, and
Ivonne Lesman (2016). “The value of telemonitoring and ICT-guided disease

268

https://doi.org/10.1023/A:1010090405266
http://dx.doi.org/10.1023/A:1010090405266
https://doi.org/https://doi.org/10.1016/j.micpro.2016.07.005
http://www.sciencedirect.com/science/article/pii/S0141933116300874
http://www.sciencedirect.com/science/article/pii/S0141933116300874
https://doi.org/https://doi.org/10.1016/j.jss.2016.09.025
http://www.sciencedirect.com/science/article/pii/S0164121216301844
http://www.sciencedirect.com/science/article/pii/S0164121216301844
https://doi.org/10.1109/AAMAS.2004.10086
http://doi.ieeecomputersociety.org/10.1109/AAMAS.2004.10086
http://doi.ieeecomputersociety.org/10.1109/AAMAS.2004.10086
https://doi.org/https://doi.org/10.1016/j.scico.2017.05.006
https://doi.org/https://doi.org/10.1016/j.scico.2017.05.006
http://www.sciencedirect.com/science/article/pii/S0167642317301168
http://www.sciencedirect.com/science/article/pii/S0167642317301168
https://doi.org/10.24963/ijcai.2017/37
https://doi.org/10.24963/ijcai.2017/37
https://doi.org/10.24963/ijcai.2017/37
https://doi.org/10.24963/ijcai.2017/37

Bibliography

management in heart failure: Results from the IN TOUCH study”. In: Interna-
tional Journal of Medical Informatics 85.1, pp. 53 –60. issn: 1386-5056. doi:
https://doi.org/10.1016/j.ijmedinf.2015.10.001. url: http://
www.sciencedirect.com/science/article/pii/S1386505615300447

(cited on p. 220).
Kucher, Kostiantyn and Danny Weyns (2013). “A Self-Adaptive Software Sys-

tem to Support Elderly Care”. In: Proc. of MIT 2013, Modern Information
Technology (cited on p. 221).

Ladkin, Peter B and Stefan Leue (1995). “Interpreting message �ow graphs”. In:
Formal Aspects of Computing 7.5, pp. 473–509 (cited on p. 102).

Lamport, Leslie (July 1978). “Time, Clocks, and the Ordering of Events in a
Distributed System”. In: Commun. ACM 21.7, pp. 558–565. issn: 0001-0782.
doi: 10.1145/359545.359563. url: http://doi.acm.org/10.1145/
359545.359563 (cited on p. 130).

Lanese, Ivan, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro (2008).
“Bridging the gap between interaction-and process-oriented choreographies”.
In: 2008 Sixth IEEE International Conference on Software Engineering and
Formal Methods. IEEE, pp. 323–332 (cited on pp. 98, 102, 103).

Leotta, Maurizio, Diego Clerissi, Dario Olianas, Filippo Ricca, Davide Ancona,
Giorgio Delzanno, Luca Franceschini, and Marina Ribaudo (2018). “An ac-
ceptance testing approach for Internet of Things systems”. In: IET Software
12.5, pp. 430–436 (cited on pp. 236, 238).

Leucker, Martin and Christian Schallhart (2009). “A brief account of runtime
veri�cation”. In: The Journal of Logic and Algebraic Programming 78.5. The
1st Workshop on Formal Languages and Analysis of Contract-Oriented
Software (FLACOS’07), pp. 293 –303. issn: 1567-8326. doi: http : / /
dx.doi.org/10.1016/j.jlap.2008.08.004. url: http://www.
sciencedirect.com/science/article/pii/S1567832608000775 (cited
on pp. 3, 29, 30, 80, 163).

Lomuscio, Alessio and Franco Raimondi (2006). “MCMAS: A Model Checker for
Multi-agent Systems”. In: Proc. of Tools and Algorithms for the Construction
and Analysis of Systems, 12th International Conference, TACAS 2006, pp. 450–
454. doi: 10.1007/11691372_31. url: https://doi.org/10.1007/
11691372_31 (cited on p. 182).

Luo, Q., Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. F. Serbanuta, and G. Rosu
(2014a). “RV-Monitor: E�cient Parametric Runtime Veri�cation with Sim-
ultaneous Properties”. In: RV’14. Vol. 8734. Springer, pp. 285–300 (cited on
p. 31).

Luo, Qingzhou, Yi Zhang, Choonghwan Lee, Dongyun Jin, Patrick O’Neil
Meredith, Traian-Florin Serbanuta, and Grigore Rosu (2014b). “RV-Monitor:
E�cient Parametric Runtime Veri�cation with Simultaneous Properties”. In:
Runtime Veri�cation, RV 2014, pp. 285–300 (cited on p. 69).

Macías-Escrivá, Frank D., Rodolfo E. Haber, Raúl M. del Toro, and Vicente
Hernández (2013). “Self-adaptive systems: A survey of current approaches,

269

https://doi.org/https://doi.org/10.1016/j.ijmedinf.2015.10.001
http://www.sciencedirect.com/science/article/pii/S1386505615300447
http://www.sciencedirect.com/science/article/pii/S1386505615300447
https://doi.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
https://doi.org/http://dx.doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://www.sciencedirect.com/science/article/pii/S1567832608000775
http://www.sciencedirect.com/science/article/pii/S1567832608000775
https://doi.org/10.1007/11691372_31
https://doi.org/10.1007/11691372_31
https://doi.org/10.1007/11691372_31

Bibliography

research challenges and applications”. In: Expert Syst. Appl. 40.18, pp. 7267–
7279 (cited on p. 2).

Maler, Oded and Dejan Nickovic (2004). “Monitoring Temporal Properties
of Continuous Signals.” In: FORMATS/FTRTFT. Ed. by Yassine Lakhnech
and Sergio Yovine. Vol. 3253. Lecture Notes in Computer Science. Springer,
pp. 152–166. url: http://dblp.uni-trier.de/db/conf/formats/
formats2004.html#MalerN04 (cited on p. 181).

Mascardi, Viviana and Davide Ancona (2013). “Attribute Global Types for
Dynamic Checking of Protocols in Logic-based Multiagent Systems”. In:
Theory and Practice of Logic Programming 13.4-5-Online-Supplement (cited
on pp. 37, 234).

Mascardi, Viviana, Daniela Briola, and Davide Ancona (2013). “On the Express-
iveness of Attribute Global Types: The Formalization of a Real Multiagent
System Protocol”. In: Proc. of AI*IA 2013: Advances in Arti�cial Intelligence
- XIIIth International Conference of the Italian Association for Arti�cial In-
telligence, pp. 300–311. doi: 10.1007/978-3-319-03524-6_26. url:
http://dx.doi.org/10.1007/978-3-319-03524-6_26 (cited on
pp. 234, 235).

Mascardi, Viviana, Angela Locoro, and Paolo Rosso (2010). “Automatic On-
tology Matching via Upper Ontologies: A Systematic Evaluation”. In: IEEE
Trans. Knowl. Data Eng. 22.5, pp. 609–623 (cited on p. 240).

Mascardi, Viviana, Davide Ancona, Rafael H. Bordini, and Alessandro Ricci
(2011). “CooL-AgentSpeak: Enhancing AgentSpeak-DL Agents with Plan
Exchange and Ontology Services”. In: Proceedings of the 2011 IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent Techno-
logy - Volume 02. WI-IAT ’11. Washington, DC, USA: IEEE Computer Society,
pp. 109–116. isbn: 978-0-7695-4513-4. doi: 10.1109/WI-IAT.2011.255.
url: https://doi.org/10.1109/WI-IAT.2011.255 (cited on p. 19).

Meron, Denis and Bruno Mermet (2006). “A Tool Architecture to Verify Proper-
ties of Multiagent System at Runtime”. In: Proc. of PROMAS. Vol. 4411. LNCS.
Springer, pp. 201–216 (cited on p. 196).

Merwe, Heila van der, Brink van der Merwe, and Willem Visser (2012). “Verify-
ing android applications using Java PathFinder”. In: ACM SIGSOFT Software
Engineering Notes 37.6, pp. 1–5. doi: 10.1145/2382756.2382797. url:
http://doi.acm.org/10.1145/2382756.2382797 (cited on p. 180).

Merz, Stephan (2000). “Model Checking: A Tutorial Overview”. In: Model-
ing and Veri�cation of Parallel Processes, 4th Summer School, MOVEP 2000,
Nantes, France, June 19-23, 2000. Ed. by Franck Cassez, Claude Jard, Bri-
gitte Rozoy, and Mark Dermot Ryan. Vol. 2067. Lecture Notes in Computer
Science. Springer, pp. 3–38. doi: 10.1007/3- 540- 45510- 8_1. url:
https://doi.org/10.1007/3-540-45510-8_1 (cited on p. 160).

– (2001). “Model checking: A tutorial overview”. In: Modeling and Veri�cation
of Parallel Processes. Springer-Verlag, pp. 3–38 (cited on pp. 3, 28).

Milner, Robin and Mads Tofte (1991). “Co-induction in relational semantics”.
In: Theoretical Computer Science 87.1, pp. 209 –220. issn: 0304-3975. doi:

270

http://dblp.uni-trier.de/db/conf/formats/formats2004.html#MalerN04
http://dblp.uni-trier.de/db/conf/formats/formats2004.html#MalerN04
https://doi.org/10.1007/978-3-319-03524-6_26
http://dx.doi.org/10.1007/978-3-319-03524-6_26
https://doi.org/10.1109/WI-IAT.2011.255
https://doi.org/10.1109/WI-IAT.2011.255
https://doi.org/10.1145/2382756.2382797
http://doi.acm.org/10.1145/2382756.2382797
https://doi.org/10.1007/3-540-45510-8_1
https://doi.org/10.1007/3-540-45510-8_1

Bibliography

https://doi.org/10.1016/0304-3975(91)90033-X. url: http://
www.sciencedirect.com/science/article/pii/030439759190033X

(cited on p. 54).
Montanari, Ugo (1974). “Networks of constraints: Fundamental properties and

applications to picture processing”. In: Information Sciences 7, pp. 95–132
(cited on p. 126).

Moreira, Álvaro F., Renata Vieira, Rafael H. Bordini, and Jomi F. Hübner (2006).
“Agent-Oriented Programming with Underlying Ontological Reasoning”. In:
Declarative Agent Languages and Technologies III. Ed. by Matteo Baldoni, Ulle
Endriss, Andrea Omicini, and Paolo Torroni. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 155–170. isbn: 978-3-540-33107-0 (cited on p. 19).

Mostafa, M. and B. Bonakdarpour (2015). “Decentralized Runtime Veri�cation
of LTL Speci�cations in Distributed Systems”. In: Parallel and Distributed
Processing Symposium, IEEE International Conference, IPDPS 2015. Proceed-
ings, pp. 494–503. doi: 10.1109/IPDPS.2015.95 (cited on pp. 125, 128).

Muscettola, Nicola, P. Pandurang Nayak, Barney Pell, and Brian C. Williams
(1998). “Remote Agent: To Boldly Go Where No AI System Has Gone Before”.
In: Artif. Intell. 103.1-2, pp. 5–47 (cited on p. 3).

Myers, Glenford J. and Corey Sandler (2004). The Art of Software Testing. John
Wiley & Sons. isbn: 0471469122 (cited on p. 30).

Myers, Glenford J., Corey Sandler, and Tom Badgett (2011). The Art of Software
Testing. 3rd. Wiley Publishing. isbn: 1118031962, 9781118031964 (cited on
p. 160).

Nguyen, Luan Viet, Christian Schilling, Sergiy Bogomolov, and Taylor T.
Johnson (2015). “Runtime Veri�cation for Hybrid Analysis Tools”. In: Proc.
of Runtime Veri�cation: 6th International Conference, RV 2015, pp. 281–286.
isbn: 978-3-319-23820-3. doi: 10.1007/978-3-319-23820-3_19. url:
http://dx.doi.org/10.1007/978-3-319-23820-3_19 (cited on p. 181).

Omicini, Andrea, Alessandro Ricci, and Mirko Viroli (2008). “Artifacts in
the A&A meta-model for multi-agent systems”. In: Autonomous Agents and
Multi-Agent Systems 17.3, pp. 432–456 (cited on p. 146).

Padgham, Lin and Michael Winiko� (2002). “Prometheus: A Methodology
for Developing Intelligent Agents”. In: Proc. of AAMAS 2002. Bologna, Italy:
ACM, pp. 37–38. isbn: 1-58113-480-0. doi: 10.1145/544741.544749. url:
http://doi.acm.org/10.1145/544741.544749 (cited on p. 98).

Papazoglou, Mike P. (2003). “Service -Oriented Computing: Concepts, Char-
acteristics and Directions”. In: Proc. of WISE 2003. IEEE Computer Society,
pp. 3–. isbn: 0-7695-1999-7. url: http://dl.acm.org/citation.cfm?
id=960322.960404 (cited on p. 98).

Parekh, Rajesh and Vasant Honavar (1998). “Grammar inference, automata
induction, and language acquisition”. In: Handbook of Natural Language
Processing. Marcel Dekker, pp. 727–764 (cited on p. 244).

Pechoucek, Michal and Vladimír Marík (2008). “Industrial deployment of
multi-agent technologies: review and selected case studies”. In: Autonomous
Agents and Multi-Agent Systems 17.3, pp. 397–431. doi: 10.1007/s10458-

271

https://doi.org/https://doi.org/10.1016/0304-3975(91)90033-X
http://www.sciencedirect.com/science/article/pii/030439759190033X
http://www.sciencedirect.com/science/article/pii/030439759190033X
https://doi.org/10.1109/IPDPS.2015.95
https://doi.org/10.1007/978-3-319-23820-3_19
http://dx.doi.org/10.1007/978-3-319-23820-3_19
https://doi.org/10.1145/544741.544749
http://doi.acm.org/10.1145/544741.544749
http://dl.acm.org/citation.cfm?id=960322.960404
http://dl.acm.org/citation.cfm?id=960322.960404
https://doi.org/10.1007/s10458-008-9050-0
https://doi.org/10.1007/s10458-008-9050-0

Bibliography

008-9050-0. url: https://doi.org/10.1007/s10458-008-9050-0
(cited on p. 2).

Penix, John, Willem Visser, Eric Engstrom, Aaron Larson, and Nicholas Wein-
inger (2000). “Veri�cation of time partitioning in the DEOS scheduler ker-
nel”. In: Proc. of the 22nd International Conference on Software Engineering,
pp. 488–497 (cited on p. 181).

Pnueli, Amir (1977). “The temporal logic of programs”. In: Proc. of the 18th
Annual Symposium on Foundations of Computer Science, pp. 46–57. doi: 10.
1109/SFCS.1977.32 (cited on pp. 31, 53, 82, 160, 235).

Pokahr, Alexander, Lars Braubach, and Winfried Lamersdorf (2005). “Jadex: A
BDI Reasoning Engine”. In: Multi-Agent Programming: Languages, Platforms
and Applications. Ed. by Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and
Amal El Fallah-Seghrouchni. Vol. 15. Multiagent Systems, Arti�cial Societies,
and Simulated Organizations. Springer, pp. 149–174 (cited on p. 21).

Poslad, Stefan (2009). Ubiquitous Computing: Smart Devices, Environments and
Interactions. 1st. Wiley Publishing. isbn: 0470035609, 9780470035603 (cited
on p. 242).

Rabiner, Lawrence R. (1990). “Readings in Speech Recognition”. In: ed. by
Alex Waibel and Kai-Fu Lee. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc. Chap. A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition, pp. 267–296. isbn: 1-55860-124-4. url:
http://dl.acm.org/citation.cfm?id=108235.108253 (cited on pp. 36,
82).

Rabiner, Lawrence R. and Biing-Hwang Juang (1986). “An introduction to
hidden Markov models”. In: IEEE ASSP Magazine, pp. 4–16 (cited on p. 36).

Raimondi, Franco and Alessio Lomuscio (2007). “Automatic veri�cation of
multi-agent systems by model checking via ordered binary decision dia-
grams”. In: J. Applied Logic 5.2, pp. 235–251. doi: 10.1016/j.jal.2005.
12.010. url: https://doi.org/10.1016/j.jal.2005.12.010 (cited
on pp. 35, 182).

Rao, Anand S. (1996). “AgentSpeak(L): BDI Agents Speak out in a Logical
Computable Language”. In: Proc. of the 7th European Workshop on Modelling
Autonomous Agents in a Multi-agent World : Agents Breaking Away: Agents
Breaking Away. MAAMAW ’96. Einhoven, The Netherlands: Springer-Verlag
New York, Inc., pp. 42–55. isbn: 3-540-60852-4. url: http://dl.acm.
org/citation.cfm?id=237945.237953 (cited on p. 20).

Rao, Anand S. and Michael P. George� (1992). “An Abstract Architecture
for Rational Agents”. In: Proceedings of the 3rd International Conference on
Principles of Knowledge Representation and Reasoning (KR’92). Cambridge,
MA, USA, October 25-29, 1992. Ed. by Bernhard Nebel, Charles Rich, and
William R. Swartout. Morgan Kaufmann, pp. 439–449 (cited on p. 20).

Ricci, Alessandro, Michele Piunti, and Mirko Viroli (2011). “Environment
programming in multi-agent systems: an artifact-based perspective”. In:
Autonomous Agents and Multi-Agent Systems 23.2, pp. 158–192 (cited on
p. 146).

272

https://doi.org/10.1007/s10458-008-9050-0
https://doi.org/10.1007/s10458-008-9050-0
https://doi.org/10.1007/s10458-008-9050-0
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
http://dl.acm.org/citation.cfm?id=108235.108253
https://doi.org/10.1016/j.jal.2005.12.010
https://doi.org/10.1016/j.jal.2005.12.010
https://doi.org/10.1016/j.jal.2005.12.010
http://dl.acm.org/citation.cfm?id=237945.237953
http://dl.acm.org/citation.cfm?id=237945.237953

Bibliography

Riemsdijk, Birna van, Wiebe van der Hoek, and John-Jules Ch. Meyer (2003).
“Agent programming in dribble: from beliefs to goals using plans”. In: The
Second International Joint Conference on Autonomous Agents & Multiagent
Systems, AAMAS 2003, July 14-18, 2003, Melbourne, Victoria, Australia, Pro-
ceedings. ACM, pp. 393–400. doi: 10.1145/860575.860639. url: http:
//doi.acm.org/10.1145/860575.860639 (cited on p. 21).

Sangiorgi, Davide (May 2009). “On the Origins of Bisimulation and Coinduc-
tion”. In: ACM Trans. Program. Lang. Syst. 31.4, 15:1–15:41. issn: 0164-0925.
doi: 10.1145/1516507.1516510. url: http://doi.acm.org/10.1145/
1516507.1516510 (cited on p. 54).

Searle, John R (1969). Speech acts: An essay in the philosophy of language.
Vol. 626. Cambridge university press (cited on p. 18).

Singh, Munindar P. (2011a). “Information-driven interaction-oriented program-
ming: BSPL, the blindingly simple protocol language”. In: Proc. of the 10th In-
ternational Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2011). Ed. by Liz Sonenberg, Peter Stone, Kagan Tumer, and Pinar Yolum.
IFAAMAS, pp. 491–498. url: http://portal.acm.org/citation.cfm?
id=2031687&CFID=54178199&CFTOKEN=61392764 (cited on pp. 61, 102,
129).

Singh, Munindar P. (2011b). “LoST: Local State Transfer - An Architectural
Style for the Distributed Enactment of Business Protocols”. In: Proc. of the
IEEE International Conference on Web Services, ICWS 2011. IEEE Computer
Society, pp. 57–64. doi: 10.1109/ICWS.2011.48. url: https://doi.
org/10.1109/ICWS.2011.48 (cited on p. 62).

– (2012). “Semantics and veri�cation of information-based protocols”. In: Proc.
of the International Conference on Autonomous Agents and Multiagent Sys-
tems, AAMAS 2012. Ed. by Wiebe van der Hoek, Lin Padgham, Vincent
Conitzer, and Michael Winiko�. IFAAMAS, pp. 1149–1156. url: http://dl.
acm.org/citation.cfm?id=2343861 (cited on p. 62).

Singh, Munindar P (2014). “Bliss: Specifying declarative service protocols”. In:
Proc. of Services Computing (SCC), 2014 IEEE International Conference. IEEE
Computer Society, pp. 235–242 (cited on p. 62).

Sistla, A. Prasad, Miloš Žefran, and Yao Feng (2012). “Runtime Monitoring
of Stochastic Cyber-physical Systems with Hybrid State”. In: Proc. of the
Second International Conference on Runtime Veri�cation. RV’11, pp. 276–293
(cited on p. 181).

Staiger, Ludwig (1997). “On omega-power Languages”. In:New Trends in Formal
Languages. Vol. 1218. Lecture Notes in Computer Science. Springer, pp. 377–
394 (cited on p. 165).

Steegmans, Elke, Danny Weyns, Tom Holvoet, and Yolande Berbers (2004). “A
Design Process for Adaptive Behavior of Situated Agents”. In: Proc. of Agent-
Oriented Software Engineering V, Revised Selected Papers. Ed. by James Odell,
Paolo Giorgini, and Jörg P. Müller. Vol. 3382. LNCS. Springer, pp. 109–125
(cited on p. 65).

273

https://doi.org/10.1145/860575.860639
http://doi.acm.org/10.1145/860575.860639
http://doi.acm.org/10.1145/860575.860639
https://doi.org/10.1145/1516507.1516510
http://doi.acm.org/10.1145/1516507.1516510
http://doi.acm.org/10.1145/1516507.1516510
http://portal.acm.org/citation.cfm?id=2031687&CFID=54178199&CFTOKEN=61392764
http://portal.acm.org/citation.cfm?id=2031687&CFID=54178199&CFTOKEN=61392764
https://doi.org/10.1109/ICWS.2011.48
https://doi.org/10.1109/ICWS.2011.48
https://doi.org/10.1109/ICWS.2011.48
http://dl.acm.org/citation.cfm?id=2343861
http://dl.acm.org/citation.cfm?id=2343861

Bibliography

Steventon, Adam et al. (2012). “E�ect of telehealth on use of secondary care and
mortality: �ndings from the Whole System Demonstrator cluster randomised
trial”. In: British Medical Journal 344. doi: 10.1136/bmj.e3874. eprint:
http://www.bmj.com/content/344/bmj.e3874.full.pdf (cited on
p. 220).

Stoller, Scott D., Ezio Bartocci, Justin Seyster, Radu Grosu, Klaus Havelund,
Scott A. Smolka, and Erez Zadok (2011). “Runtime Veri�cation with State
Estimation”. In: Proc. of RV 2011, Revised Selected Papers. Vol. 7186. LNCS.
Springer, pp. 193–207 (cited on pp. 80–82, 85, 90, 100, 129).

Testerink, Bas, Nils Bulling, and Mehdi Dastani (2016). “Security and Ro-
bustness for Collaborative Monitors”. In: Coordination, Organizations, In-
stitutions, and Normes in Agent Systems XI - COIN 2015 International Work-
shops, Revised Selected Papers. Ed. by Virginia Dignum, Pablo Noriega, Murat
Sensoy, and Jaime Simão Sichman. Vol. 9628. Lecture Notes in Computer Sci-
ence. Springer, pp. 376–395. isbn: 978-3-319-42690-7. doi: 10.1007/978-
3-319-42691-4. url: http://dx.doi.org/10.1007/978-3-319-
42691-4 (cited on p. 125).

Testerink, Bas, Mehdi Dastani, and Nils Bulling (2016). “Distributed Controllers
for Norm Enforcement”. In: ECAI 2016 - 22nd European Conference on Arti�-
cial Intelligence – Including Prestigious Applications of Arti�cial Intelligence
(PAIS 2016). Ed. by Gal A. Kaminka, Maria Fox, Paolo Bouquet, Eyke Hüller-
meier, Virginia Dignum, Frank Dignum, and Frank van Harmelen. Vol. 285.
Frontiers in Arti�cial Intelligence and Applications. IOS Press, pp. 751–759
(cited on p. 125).

The OASIS Web Services Business Process Execution Language (WSBPEL)
Technical Committee (2007). “Web Services Business Process Execution
Language Version 2.0” (cited on p. 146).

Thomas, Wolfgang (1990). “Automata on In�nite Objects”. In: Handbook of The-
oretical Computer Science, Volume B: FormalModels and Sematics (B), pp. 133–
192 (cited on p. 165).

Tinnemeier, Nick A. M., Mehdi Dastani, John-Jules Ch. Meyer, and Leendert W.
N. van der Torre (2009). “Programming Normative Artifacts with Declarative
Obligations and Prohibitions”. In: Proc. of IAT 2009. IEEE Computer Society,
pp. 145–152 (cited on p. 100).

Tkachuk, Oksana, Matthew B. Dwyer, and Corina S. Pasareanu (2003). “Auto-
mated Environment Generation for Software Model Checking”. In: Proc.
of the 18th IEEE International Conference on Automated Software Engineer-
ing (ASE 2003), pp. 116–129. doi: 10.1109/ASE.2003.1240300. url:
https://doi.org/10.1109/ASE.2003.1240300 (cited on p. 181).

Torroni, Paolo, Pinar Yolum, Munindar P. Singh, Marco Alberti, Federico Ches-
ani, Marco Gavanelli, Evelina Lamma, and Paola Mello (2009). “Modelling
Interactions via Commitments and Expectations”. In: Handbook of Research
on Multi-Agent Systems: Semantics and Dynamics of Organizational Models
(cited on p. 182).

274

https://doi.org/10.1136/bmj.e3874
http://www.bmj.com/content/344/bmj.e3874.full.pdf
https://doi.org/10.1007/978-3-319-42691-4
https://doi.org/10.1007/978-3-319-42691-4
http://dx.doi.org/10.1007/978-3-319-42691-4
http://dx.doi.org/10.1007/978-3-319-42691-4
https://doi.org/10.1109/ASE.2003.1240300
https://doi.org/10.1109/ASE.2003.1240300

Bibliography

UK Department of Health (2011). “Whole System Demonstrator Programme –
Headline Findings” (cited on p. 220).

Vardi, Moshe Y. (2007). “Automata-Theoretic Model Checking Revisited”. In:
VMCAI. Vol. 4349. Lecture Notes in Computer Science. Springer, pp. 137–150
(cited on p. 161).

Venkatraman, Mahadevan and Munindar P. Singh (1999). “Verifying Compli-
ance with Commitment Protocols”. In: Autonomous Agents and Multi-Agent
Systems 2.3, pp. 217–236. doi: 10.1023/A:1010056221226. url: https:
//doi.org/10.1023/A:1010056221226 (cited on p. 63).

Visser, Willem, Klaus Havelund, Guillaume P. Brat, Seungjoon Park, and Fla-
vio Lerda (2003). “Model Checking Programs”. In: Autom. Softw. Eng. 10.2,
pp. 203–232. doi: 10.1023/A:1022920129859. url: https://doi.org/
10.1023/A:1022920129859 (cited on pp. 35, 160).

Wallace, Eric L. et al. (2017). “Remote Patient Management for Home Dialysis
Patients”. In: Kidney International Reports. issn: 2468-0249. doi: https:
/ / doi . org / 10 . 1016 / j . ekir . 2017 . 07 . 010. url: http : / / www .
sciencedirect.com/science/article/pii/S2468024917303170 (cited
on p. 220).

Weiss, Gerhard, ed. (1999). Multiagent Systems: A Modern Approach to Distrib-
uted Arti�cial Intelligence. Cambridge, MA, USA: MIT Press. isbn: 0-262-
23203-0 (cited on p. 16).

Weyns, Danny (2012). “Towards an integrated approach for validating qualities
of self-adaptive systems”. In: Proc. of the International Workshop on Dynamic
Analysis. Ed. by Eric Bodden and Madanlal Musuvathi. ACM, pp. 24–29.
doi: 10.1145/2338966.2336803. url: http://doi.acm.org/10.1145/
2338966.2336803 (cited on p. 65).

– (2018). “Software Engineering of Self-Adaptive Systems: An Organised
Tour and Future Challenges”. In: Handbook of Software Engineering. Ed. by
Richard Taylor, Kyo Chul Kang, and Sungdeok Cha. Springer (cited on pp. 59,
60, 232).

Weyns, Danny and Radu Calinescu (2015). “Tele Assistance: A Self-Adaptive
Service-Based System Exemplar”. In: Proc. of the 10th IEEE/ACM Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS 2015. Ed. by Paola Inverardi and Bradley R. Schmerl. IEEE
Computer Society, pp. 88–92. doi: 10.1109/SEAMS.2015.27. url: https:
//doi.org/10.1109/SEAMS.2015.27 (cited on p. 66).

Weyns, Danny and Michael George� (2010). “Self-Adaptation Using Multiagent
Systems”. In: IEEE Software 27.1, pp. 86–91 (cited on p. 59).

Weyns, Danny and M. Usman Iftikhar (2016). “Model-Based Simulation at
Runtime for Self-Adaptive Systems”. In: Proc. of the 2016 IEEE International
Conference on Autonomic Computing, ICAC. Ed. by Samuel Kounev, Holger
Giese, and Jie Liu. IEEE Computer Society, pp. 364–373. doi: 10.1109/
ICAC.2016.67. url: https://doi.org/10.1109/ICAC.2016.67 (cited
on p. 65).

275

https://doi.org/10.1023/A:1010056221226
https://doi.org/10.1023/A:1010056221226
https://doi.org/10.1023/A:1010056221226
https://doi.org/10.1023/A:1022920129859
https://doi.org/10.1023/A:1022920129859
https://doi.org/10.1023/A:1022920129859
https://doi.org/https://doi.org/10.1016/j.ekir.2017.07.010
https://doi.org/https://doi.org/10.1016/j.ekir.2017.07.010
http://www.sciencedirect.com/science/article/pii/S2468024917303170
http://www.sciencedirect.com/science/article/pii/S2468024917303170
https://doi.org/10.1145/2338966.2336803
http://doi.acm.org/10.1145/2338966.2336803
http://doi.acm.org/10.1145/2338966.2336803
https://doi.org/10.1109/SEAMS.2015.27
https://doi.org/10.1109/SEAMS.2015.27
https://doi.org/10.1109/SEAMS.2015.27
https://doi.org/10.1109/ICAC.2016.67
https://doi.org/10.1109/ICAC.2016.67
https://doi.org/10.1109/ICAC.2016.67

Bibliography

Weyns, Danny, Kurt Schelfthout, and Tom Holvoet (2005). “Architectural
design of a distributed application with autonomic quality requirements”.
In: ACM SIGSOFT Software Engineering Notes 30.4, pp. 1–7. doi: 10.1145/
1082983.1083076. url: http://doi.acm.org/10.1145/1082983.
1083076 (cited on p. 65).

Weyns, Danny, M. Usman Iftikhar, Danny Hughes, and Nelson Matthys (2018).
“Applying Architecture-Based Adaptation to Automate the Management
of Internet-of-Things”. In: ECSA. Vol. 11048. Lecture Notes in Computer
Science. Springer, pp. 49–67 (cited on p. 65).

Winiko�, Michael (2007). “Implementing commitment-based interactions”.
In: 6th International Joint Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2007), Honolulu, Hawaii, USA, May 14-18, 2007. Ed.
by Edmund H. Durfee, Makoto Yokoo, Michael N. Huhns, and Onn She-
hory. IFAAMAS, p. 128. doi: 10.1145/1329125.1329283. url: http:
//doi.acm.org/10.1145/1329125.1329283 (cited on p. 21).

– (2017). “Trusting Autonomous Agents”. Informal Proceedings of the Engin-
eering Multi-Agent Systems (EMAS) 2017 Workshop. http://apice.unibo.
it/xwiki/bin/download/EMAS2017/Proceedings/EMAS%2D2017%

2Dinformal%2Dproceedings.pdf (cited on p. 220).
Winiko�, Michael, Wei Liu, and James Harland (2004a). “Enhancing Commit-

ment Machines”. In: Proc. of Declarative Agent Languages and Technologies
II, Second International Workshop, DALT 2004, Revised Selected Papers. Ed.
by João Alexandre Leite, Andrea Omicini, Paolo Torroni, and Pinar Yolum.
Vol. 3476. LNCS. Springer, pp. 198–220. doi: 10.1007/11493402_12. url:
https://doi.org/10.1007/11493402_12 (cited on p. 62).

– (2004b). “Enhancing Commitment Machines”. In: Proc. of DALT 2004, Re-
vised Selected Papers. Vol. 3476. LNCS. Springer, pp. 198–220 (cited on p. 129).

Winiko�, Michael, Nitin Yadav, and Lin Padgham (2018). “A new Hierarchical
Agent Protocol Notation”. In: Autonomous Agents and Multi-Agent Systems
32.1, pp. 59–133. doi: 10.1007/s10458-017-9373-9. url: https://doi.
org/10.1007/s10458-017-9373-9 (cited on p. 64).

Winiko�, Michael, Lin Padgham, James Harland, and John Thangarajah (2002).
“Declarative & Procedural Goals in Intelligent Agent Systems”. In: Proceed-
ings of the Eights International Conference on Principles and Knowledge Rep-
resentation and Reasoning (KR-02), Toulouse, France, April 22-25, 2002. Ed. by
Dieter Fensel, Fausto Giunchiglia, Deborah L. McGuinness, and Mary-Anne
Williams. Morgan Kaufmann, pp. 470–481 (cited on p. 21).

Wood, Peter W., Pierre Boulanger, and Raj S. Padwal (2017). “Home Blood Pres-
sure Telemonitoring: Rationale for Use, Required Elements, and Barriers to
Implementation in Canada”. In: Canadian Journal of Cardiology 33.5, pp. 619
–625. issn: 0828-282X. doi: https://doi.org/10.1016/j.cjca.2016.
12.018. url: http://www.sciencedirect.com/science/article/
pii/S0828282X16311783 (cited on p. 220).

Wooldridge, Michael John (1992). The LogicalModelling of ComputationalMulti-
Agent Systems (cited on p. 2).

276

https://doi.org/10.1145/1082983.1083076
https://doi.org/10.1145/1082983.1083076
http://doi.acm.org/10.1145/1082983.1083076
http://doi.acm.org/10.1145/1082983.1083076
https://doi.org/10.1145/1329125.1329283
http://doi.acm.org/10.1145/1329125.1329283
http://doi.acm.org/10.1145/1329125.1329283
http://apice.unibo.it/xwiki/bin/download/EMAS2017/Proceedings/EMAS%2D2017%2Dinformal%2Dproceedings.pdf
http://apice.unibo.it/xwiki/bin/download/EMAS2017/Proceedings/EMAS%2D2017%2Dinformal%2Dproceedings.pdf
http://apice.unibo.it/xwiki/bin/download/EMAS2017/Proceedings/EMAS%2D2017%2Dinformal%2Dproceedings.pdf
https://doi.org/10.1007/11493402_12
https://doi.org/10.1007/11493402_12
https://doi.org/10.1007/s10458-017-9373-9
https://doi.org/10.1007/s10458-017-9373-9
https://doi.org/10.1007/s10458-017-9373-9
https://doi.org/https://doi.org/10.1016/j.cjca.2016.12.018
https://doi.org/https://doi.org/10.1016/j.cjca.2016.12.018
http://www.sciencedirect.com/science/article/pii/S0828282X16311783
http://www.sciencedirect.com/science/article/pii/S0828282X16311783

Bibliography

Wooldridge, Michael and Nicholas R. Jennings (1995). “Intelligent agents:
theory and practice”. In: Knowledge Eng. Review 10.2, pp. 115–152. doi:
10. 1017/S0269888900008122. url: https: //doi .org/10 .1017/
S0269888900008122 (cited on p. 2).

Yadav, Nitin, Lin Padgham, and Michael Winiko� (2015a). “A Tool for De�ning
Agent Protocols in HAPN: (Demonstration)”. In: Proc. of the 2015 Interna-
tional Conference on Autonomous Agents and Multiagent Systems. AAMAS
’15. IFAAMAS, pp. 1935–1936 (cited on p. 64).

– (2015b). “A Tool for De�ning Agent Protocols in HAPN: (Demonstration)”.
In: Proc. of AAMAS 2015. ACM, pp. 1935–1936 (cited on p. 129).

Yolum, Pinar (2006). “Towards Design Tools for Protocol Development”. In:
Proc. of Agent Communication II, International Workshops on Agent Com-
munication, AC 2005 and AC 2006, Selected and Revised Papers. Ed. by Frank
Dignum, Rogier M. van Eijk, and Roberto A. Flores. Vol. 3859. LNCS. Springer,
pp. 196–210. doi: 10.1007/978- 3- 540- 68143- 4_14. url: https:
//doi.org/10.1007/978-3-540-68143-4_14 (cited on p. 63).

Yolum, Pinar and Munindar P. Singh (2001). “Commitment Machines”. In: Proc.
of Intelligent Agents VIII, 8th International Workshop, ATAL 2001, Revised
Papers. Ed. by John-Jules Ch. Meyer and Milind Tambe. Vol. 2333. LNCS.
Springer, pp. 235–247. doi: 10.1007/3-540-45448-9_17. url: https:
//doi.org/10.1007/3-540-45448-9_17 (cited on p. 62).

– (2002). “Commitment Machines”. In: Proc. of ATAL 2001, Revised Papers.
Vol. 2333. Springer, pp. 235–247 (cited on pp. 129, 146).

Yoo, Sung J. Choi, John A. Nyman, Andrea L. Cheville, and Kurt Kroenke
(2014). “Cost e�ectiveness of telecare management for pain and depres-
sion in patients with cancer: results from a randomized trial”. In: Gen-
eral Hospital Psychiatry 36.6, pp. 599 –606. issn: 0163-8343. doi: https:
//doi.org/10.1016/j.genhosppsych.2014.07.004. url: http://
www.sciencedirect.com/science/article/pii/S016383431400173X

(cited on p. 220).
Yukish, M., E. Peluso, S. Phoha, S. Sircar, J. Licari, A. Ray, and I. Mayk (1994).

“Limits of control in designing distributed C2 experiments under imperfect
communications”. In: Military Communications Conference, 1994. MILCOM
’94. IEEE (cited on p. 100).

d’Amorim, Marcelo and Grigore Rosu (2005). “E�cient Monitoring of omega-
Languages”. In: Computer Aided Veri�cation, 17th International Conference,
CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005, Proceedings. Ed. by Kousha
Etessami and Sriram K. Rajamani. Vol. 3576. Lecture Notes in Computer
Science. Springer, pp. 364–378. doi: 10.1007/11513988_36. url: https:
//doi.org/10.1007/11513988_36 (cited on p. 53).

277

https://doi.org/10.1017/S0269888900008122
https://doi.org/10.1017/S0269888900008122
https://doi.org/10.1017/S0269888900008122
https://doi.org/10.1007/978-3-540-68143-4_14
https://doi.org/10.1007/978-3-540-68143-4_14
https://doi.org/10.1007/978-3-540-68143-4_14
https://doi.org/10.1007/3-540-45448-9_17
https://doi.org/10.1007/3-540-45448-9_17
https://doi.org/10.1007/3-540-45448-9_17
https://doi.org/https://doi.org/10.1016/j.genhosppsych.2014.07.004
https://doi.org/https://doi.org/10.1016/j.genhosppsych.2014.07.004
http://www.sciencedirect.com/science/article/pii/S016383431400173X
http://www.sciencedirect.com/science/article/pii/S016383431400173X
https://doi.org/10.1007/11513988_36
https://doi.org/10.1007/11513988_36
https://doi.org/10.1007/11513988_36

	Dedication
	Quote
	Abstract
	Publications
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Open source code
	Acronyms
	I Introduction
	1 Motivations and Aims of the Thesis
	2 Structure and Contributions of the Thesis
	2.1 Structure
	2.2 Contributions
	2.2.1 Propose an expressive formalism and its extensions to support runtime verification of complex systems
	2.2.2 Design and define the algorithms for obtaining a decentralized runtime verification approach of Agent Interaction Protocols
	2.2.3 Propose a hybrid approach combining runtime and static verification of multiagent systems
	2.2.4 Present a tool developed for supporting runtime verification guided by trace expressions and a case study

	2.3 How to read the Thesis

	II Background
	3 Preliminaries
	3.1 Multiagent Systems and Distributed Artificial Intelligence
	3.2 Rational agents
	3.3 Jason
	3.4 JADE
	3.4.1 Architecture
	3.4.2 Creating agents

	3.5 Techniques for checking the system's behaviour
	3.5.1 Model checking
	3.5.2 Runtime verification
	3.5.3 Runtime verification versus Model checking

	3.6 LTL
	3.6.1 LTL syntax and semantics
	3.6.2 Non deterministic Büchi Automaton
	3.6.3 LTL Model Checking
	3.6.4 Automata-Based Model Checking
	3.6.5 LTL3

	3.7 Model Checking Agent Programming Languages
	3.8 Hidden Markov Models
	3.9 Global Types
	3.9.1 Syntax
	3.9.2 Semantics

	4 Trace expressions
	4.1 Introduction
	4.2 The trace expression formalism
	4.2.1 Events
	4.2.2 Event types
	4.2.3 Trace expressions
	4.2.4 Deterministic trace expressions
	4.2.5 Expansive trace expressions
	4.2.6 Derived operators

	4.3 Examples of specifications with trace expressions
	4.3.1 Ping Pong Protocol
	4.3.2 Alternating Bit Protocol
	4.3.3 Non context free languages

	4.4 Trace expressions monitoring
	4.5 Comparison with LTL
	4.5.1 Comparing trace expressions and LTL

	5 State of the art
	5.1 Engineering Multiagent Systems
	5.2 Blindingly Simple Protocol Language
	5.3 Commitment-based Interaction
	5.4 New Hierarchical Agent Protocol Notation
	5.5 Self-adaptive Systems Engineering

	III Formalism extensions
	6 Parametric Trace Expressions
	6.1 Introduction
	6.1.1 Illustrative example

	6.2 Formalization
	6.3 Illustrative example revisited
	6.4 Case study
	6.4.1 Informal specification of the protocol
	6.4.2 Formal specification of the protocol

	6.5 Discussion

	7 Probabilistic Trace Expressions
	7.1 Introduction
	7.2 Runtime Verification with State Estimation
	7.3 Probabilistic Trace Expressions
	7.3.1 Non Determinism in State Transitions
	7.3.2 From Trace Expressions to Probabilistic Trace Expressions

	7.4 From Hidden Markov Models to Probabilistic Trace Expressions
	7.4.1 The HMM2PTE Algorithm
	7.4.2 Forward Algorithm for Probabilistic Trace Expressions
	7.4.3 Satisfying LTL Properties when Gaps Are Observed

	7.5 Implementation and Experiments
	7.6 Discussion

	IV Engineering Agent Interaction Protocols
	8 Issues with Agent Interaction Protocols
	8.1 Introduction
	8.2 Projection of an Agent Interaction Protocol
	8.3 State of the art
	8.4 The Good, the Bad and the Ugly
	8.5 Partial Observability: how the Good Becomes Bad
	8.5.1 Observability-driven transformation of trace expressions
	8.5.2 Implementation and Experiments

	8.6 Revisiting Good and Bad notions
	8.7 Discussion

	9 Decentralized Runtime Verification of Agent Interaction Protocols
	9.1 Introduction
	9.2 Motivations
	9.3 DecAMon: a Gentle Introduction
	9.3.1 High-level Description and Examples

	9.4 Design
	9.5 Implementation and Experiments
	9.6 Discussion

	10 Decentralized Runtime Verification of Agent Interaction Protocols with Gaps
	10.1 Introduction
	10.2 Exploiting DecAMon for PTEs
	10.3 Handling Gaps in Decentralized RV
	10.3.1 Synchronizing Decentralized Gaps Management

	10.4 Example
	10.5 Implementation and Experiments
	10.6 Discussion

	11 Conformance checking
	11.1 Introduction
	11.2 State of the art
	11.3 LAIP Conformance Modulo Mapping
	11.4 Conformance algorithm: pseudo-code
	11.5 Implementation and Experiments
	11.6 Discussion

	V Combining static and runtime verification
	12 Trace expressions model checking
	12.1 Introduction
	12.2 State of the art
	12.3 Motivations
	12.4 Model Checking Trace expressions
	12.4.1 1st step: Rewriting
	12.4.2 2nd step: Translation
	12.4.3 3rd step: Product

	12.5 Implementation and Experiments
	12.6 Discussion

	13 Recognising Assumption Violations in Autonomous Systems Verification
	13.1 Introduction
	13.2 State of the art
	13.3 Running Example
	13.4 Recognising Assumption Violations
	13.4.1 AJPF Static Formal Verification
	13.4.2 Event Types for AJPF Environments
	13.4.3 Abstract Model Generation
	13.4.4 MCAPL Runtime Verification

	13.5 Discussion

	VI Implementation and Case Study
	14 Development of a framework supporting trace expressions RV
	14.1 Introduction
	14.2 Trace expression RV using SWI-Prolog
	14.3 RIVERtools
	14.3.1 An example using RIVERtools
	14.3.2 Decentralizing the Example with RIVERtools
	14.3.3 Screenshots

	14.4 Tutorial: How to use RIVERtools
	14.4.1 How to install SWI-Prolog
	14.4.2 How to install RIVERtools Eclipse plugin
	14.4.3 How to use RIVERtools plugin (through an example)
	14.4.4 How to verify a MAS implemented in JADE

	14.5 Discussion

	15 Case Study
	15.1 Introduction
	15.1.1 A Jason Framework Supporting Agents Driven by Parametric Trace Expressions
	15.1.2 Modeling Clinical Guidelines
	15.1.3 Modeling Management of Hypoglycemia in the Newborns

	15.2 Experiments
	15.2.1 A priori verification (attains fault tolerance and removal)
	15.2.2 Self-adaptation (attains flexibility and fault tolerance and removal)
	15.2.3 Performances

	15.3 Discussion

	VII Discussion
	16 Comparison
	16.1 Trace Expressions VS State of the art
	16.1.1 Comparison

	17 Conclusions and Future Work
	17.1 Conclusions
	17.2 Expected Future Directions
	17.3 Unexpected Future Directions

	A Medical Guidelines

