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“Human beings, who are almost unique in having the ability to learn from the

experience of others, are also remarkable for their apparent disinclination to do

so.”

Douglas Adams
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non c’è modo migliore di superare un esame se non pensando alla bontà che ti
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davvero importante è avere al proprio fianco la persona giusta e sono davvero felice

di averla trovata (o meglio dire che lei abbia trovato me). Sono convinto che non

ii



importa quali saranno (se ci saranno) i trionfi, i successi e i premi che la vita potrà
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Introduction

Today’s software systems raise many challenges to their designers as they are

required to be more and more autonomous, recoverable and reliable to guarantee

the expected level of the offered services. Achieving all the three goals together

requires to find the right balance between the ability of the system to operate with

a high degree of freedom, including its ability to recover to an acceptable state in

case of exceptional situations, and the guarantee of a behaviour compliant with

the designers’ requirements.

Self-adaptive systems, namely systems able to modify their behaviour and/or

structure in response to their perception of the environment and the system it-

self, and their goals [83], are a widely accepted answer to the increasing need of

autonomy and recoverability of modern complex systems.

Reliability can be achieved by enforcing all the system’s components to respect

given patterns of behaviour, known to be safe.

In this thesis we address the design and implementation of self-adaptive multia-

gent systems where compliance to a given interaction protocol is guaranteed by

construction, allowing agents to operate in a reliable way. In the proposed frame-

work, agents are driven by first class specifications of interaction protocols which

can change at runtime, making self-adaptation a side result obtained almost for

free.

Adaptation takes place according to the instructions of agents empowered to re-

quest protocol switches and acting as central controllers. In the most general

setting, different agents could take the role of controller in different moments, or

even in the same moment provided that they coordinate themselves for controlling

the system. In our framework we assume that there is only one controller agent at

xi



a time. Since switching to a new protocol may require to be in some safe state1,

the protocol’s designer can specify when the agents are allowed to manage a switch

request (and, as a consequence, when they are not).

We present the formalism that we have designed to define our protocols, in par-

ticular, we focus on the possible uses which can be made of it, starting from the

use for runtime verification, where the goal is to create a monitor that checks

the behaviour of a set of agents, to the more innovative use for “protocol-driven”

behaviour, where all the agents are correct by construction. In the context of

runtime verification, we compare our formalism to more traditional ones like LTL,

showing the benefits resulting from the use of our formalisms. In particular, we

show that any LTL formula can be translated into a term of our formalism which

is equivalent from the point of view of runtime verification.

The code of “protocol-driven” agents is not generated from the protocol specifica-

tion prior to the MAS deployment, as this would hard wire the protocol-compliant

behaviour into the code preventing agents from adapting to protocol changes.

Rather, the agent’s interpreter takes the current state of the interaction protocol

into account to devise which messages could be sent, allowing the agent to select

and send one of them, or which messages could be received, allowing the agent

to verify whether the received message – if any – was one among the expected

ones and to react in a suitable way. Changing the executing protocol as the result

of an acceptable protocol switch request causes the interpreter to call a cleanup

procedure and to proceed in the normal way following the new protocol.

A characterizing feature of our approach is that protocol specifications take a

global, rather than a local, perspective and each agent, before starting to follow

a new protocol, projects the protocol onto itself by removing the protocol’s com-

ponents not involving itself. If all the agents in the MAS are driven by the same

global protocol, the compliance of the MAS execution to the protocol comes for

free.

In this work we present the formalism which can be used - and it has been used - to

represent a large number of protocols. In fact, with our formalism, we can specify

regular, context-free and non context-free languages2. This expressive power is a

1Consider for example an agent following the protocol “drive home” who is required by his
kid in the backseat to move to the protocol “look at me, I feel bad...”. Even if looking at the
suffering kid is a high priority protocol to follow, the agent can move to it only when the car’s
speed is low enough, or, better, the car has been stopped.

2In Section 4.3 we report some examples of languages that we have implemented.



key advantage when we compare our formalism with LTL in the runtime verifi-

cation context, considering that LTL is less expressive than ω-regular languages

(this aspect will be clearer in Section 4.4).

The proposed self-adaptive MAS framework is not only presented, designed and

theorized but it is also implemented in two famous tools used for the development

of MASs: Jason and JADE3. Both the implementations follow the same approach,

in fact, they keep the representation of the protocols (using the fixed formalism)

in the same way distinguishing only the implementation of the protocol-driven

agent’s interpreter, that is the body of the agent which must query the protocol

in order to know what the agent can do in the current state. Consequently the

implementation in these two tools (and in any other tool) is extremely faster

because the protocol representation, interrogation and so on are obtained once

and for all using the same language4, without the necessity to rewrite the same

code for each different implementation (promoting the reuse of code).

In order to show that our framework works correctly, we have reported all the

results obtained by the experiments made in Jason and JADE. In Chapter 5 we

present some examples of protocol specification using our formalism, after that,

in Sections 6.3.2 and 6.3.3 we report all outputs produced by the execution of the

protocol-driven agents which follow the protocols defined in Chapter 5. In both

cases, that are Jason and JADE implementations, we have obtained excellent

results showing that in both implementations all agents work rightly and they are

correct by construction following the protocol totally.

The thesis is structured as follows, in Chapter 1 we give all theoretical and practical

basics, in Chapter 2 we present the state of the art, in Chapter 3 we introduce the

building blocks of our framework, in Chapter 4 we define the formalism which we

have used to represent our protocols, in Chapter 5 we report some protocol defined

with the formalism presented, in Chapter 6 we analyze all technical details and

the implementation of our framework, in Chapter 7 we focus on the conclusions

and the presentation of some possible future developments.

3We present both tools in Sections 1.2 and 1.3 respectively.
4All technical details are given in Chapter 6.



Chapter 1

Background

1.1 Multiagent Systems and Distributed Artifi-

cial Intelligence

Since its inception in the mid to late 1970s distributed artificial intelligence (DAI)

evolved and diversified rapidly. Today it is an established and promising research

and application field which brings together and draws on results, concepts, and

ideas from many disciplines, including artificial intelligence (AI), computer science,

sociology, economics, organization and management science, and philosophy.

As defined in [90], an agent is a computational entity such as a software program

or a robot that can be viewed as perceiving and acting upon its environment

and that is autonomous in that its behaviour at least partially depends on its

own experience. As an intelligent entity, an agent operates flexibly and rationally

in a variety of environmental circumstances given its perceptual and effectual

equipment. Behavioral flexibility and rationality are achieved by an agent on

the basis of key processes such as problem solving, planning, decision making, and

learning. As an interacting entity, an agent can be affected in its activities by other

agents and perhaps by humans. A key pattern of event in multiagent systems

is goal- and task-oriented coordination, both in cooperative and in competitive

situations. In the case of cooperation several agents try to combine their efforts to

accomplish as a group what the individuals cannot, and in the case of competition

several agents try to get what only some of them can have. The long-term goal

of DAI is to develop mechanisms and methods that enable agents to interact

1
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like humans (or even better), and to understand events among intelligent entities

whether they are computational, human, or both. This goal raises a number of

challenging issues that all are centered around the elementary question of when

and how to interact with whom.

To make the above considerations more concrete, a closer look has to be taken on

multiagent systems and thus on “interacting, intelligent agents”:

• “Agents” are autonomous, computational entities that can be viewed as

perceiving their environment through sensors and acting upon their environ-

ment through effectors. To say that agents are computational entities means

that they physically exist in the form of programs that run on computing

devices. To say that they are autonomous means that to some extent they

have control over their behaviour without the intervention of humans and

other systems. Agents pursue goals or carry out tasks in order to meet their

design objectives, and in general these goals and tasks can be supplementary

as well as conflicting.

For N. R. Jennings et al. [64], an agent is a computer system, situated in

some environment, that is capable of flexible autonomous actions in order

to meet its design objectives. There are thus three key concepts in their

definition: situatedness, autonomy, and flexibility. In detail,

– Situatedness, in this context, means that the agent receives sensory in-

put from its environment and that it can perform actions which change

the environment in some way;

– Autonomy is a difficult concept to pin down precisely, but they mean

it in the sense that the system should be able to act without the direct

intervention of humans (or other agents), and that it should have control

over its own actions and internal state;

– By flexible, they mean that the system is: responsive, agents should

perceive their environment and respond in a timely fashion to changes

that occur in it, pro-active, agents should not simply act in response to

their environment, they should be able to exhibit opportunistic, goal-

directed behaviour and take the initiative where appropriate and social,

agents should be able to interact, when appropriate, with other artificial

agents and humans in order to complete their own problem solving and

to help others with their activities.
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• “Intelligent” indicates that the agents pursue their goals and execute their

tasks such that they optimize some given performance measures. To say that

agents are intelligent does not mean that they are omniscient or omnipotent,

nor does it mean that they never fail. Rather, it means that they operate

flexibly and rationally in a variety of environmental circumstances, given the

information they have and their perceptual and effectual capabilities.

• “Interacting” indicates that the agents may be affected by other agents or

perhaps by humans in pursuing their goals and executing their tasks. Events

can take place indirectly through the environment in which they are embed-

ded (e.g., by observing one another or by carrying out an action that modifies

the environmental state) or directly through a shared language (e.g., by pro-

viding information in which other agents are interested or which confuses

other agents). DAI primarily focuses on coordination as a form of event that

is particularly important with respect to goal attainment and task comple-

tion. The purpose of coordination is to achieve or avoid states of affairs

that are considered as desirable or undesirable by one or several agents. To

coordinate their goals and tasks, agents have to explicitly take dependencies

among their activities into consideration. Two basic, contrasting patterns of

coordination are cooperation and competition. In the case of cooperation,

several agents work together and draw on the broad collection of their knowl-

edge and capabilities to achieve a common goal. Against that, in the case

of competition, several agents work against each other because their goals

are conflicting. Cooperating agents try to accomplish as a team what the

individuals cannot, and so fail or succeed together. Competitive agents try

to maximize their own benefit at the expense of others, and so the success

of one implies the failure of others.

1.1.1 Agent Communications Language performatives

Performativity is a term for the capacity of speech and communication not just

to communicate but rather to act or consummate an action, or to construct and

perform an identity. A common example is the act of saying “I pronounce you man

and wife” by a licensed minister before two people who are prepared to wed (or “I

do” by one of those people upon being asked whether they take their partner in
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marriage). An umpire calling a strike, a judge pronouncing a verdict, or a union

boss declaring a strike are all examples of performative speech.

Speech Act Theory as introduced by Oxford philosopher J.L. Austin [11] and

further developed by American philosopher J.R. Searle, considers the types of acts

that utterances can be said to perform:

• Locutionary Acts;

• Illocutionary Acts;

• Perlocutionary Acts.

Agent Communication Language (ACL) is based on the speech act theory:

messages are actions, or communicative acts, as they are intended to perform some

action by virtue of being sent. The specification consists of a set of message types

and the description of their pragmatics, that is the effects on the mental attitudes

of the sender and receiver agents. Every communicative act is described with both

a narrative form and a formal semantics based on modal logic.

The most popular ACLs are:

• FIPA-ACL [1] (by the Foundation for Intelligent Physical Agents, a stan-

dardization consortium);

• KQML [50] (Knowledge Query and Manipulation Language).

Both rely on the speech act theory developed by Searle in the 1960s [86] and

enhanced by Winograd and Flores in the 1970s. They define a set of performatives,

also called Communicative Acts, and their meaning (e.g. tell). The content of the

performative is not standardized, but varies from language to language.

Speech act theory uses the term performative to identify the illocutionary force

of this special class of utterance. Example performative verbs include promise,

report, convince, insist, tell, request, and demand. Illocutionary forces can be

broadly classified as assertives (statements of fact), directives (commands in a

master-slave structure), commissives (commitments), declaratives (statements of

fact), and expressives (expressions of emotion). Performatives are usually repre-

sented in the stylized syntactic form “I hereby tell...” or “I hereby request...”
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Because performatives have the special property that “saying it makes it so,”

not all verbs are performatives. For example, stating that “I hereby solve this

problem” does not create the solution. Although the term speech is used in this

discussion, speech acts have to do with communication in forms other than the

spoken word. In summary, speech act theory helps define the type of message by

using the concept of the illocutionary force, which constrains the semantics of the

communication act itself. The sender’s intended communication act is clearly de-

fined, and the receiver has no doubt as to the type of message sent. This constraint

simplifies the design of our software agents.

To make agents understand each other they have to speak the same language; they

can also have a common ontology. An ontology is a part of the agent’s knowledge

base that describes what kind of things an agent can deal with and how they are

related to each other.

1.2 Jason

Jason1 [22] is an engine for an extended version of the AgentSpeak language [84].

It implements the operational semantics of that language, and provides a platform

for the development of multiagent systems, with many user-customisable features.

Jason is available Open Source, and is distributed under GNU LGPL.

One of the most interesting aspects of AgentSpeak is that it was inspired by and

based on a model of human behaviour that was developed by philosophers. This

model is called the belief-desire-intention (BDI) model. Belief-desire-intention

architectures originated from the work of the Rational Agency project at Stanford

Research Institute in the mid-1980s. The origins of the model lie in the theory

of human practical reasoning developed by the philosopher Michael Bratman [23],

which focuses particularly on the role of intentions in practical reasoning. The

conceptual framework of the BDI model is described in [24], which also describes

a specific BDI agent architecture called IRMA.

We describe all constructs of the extended version of the AgentSpeak language

used by Jason that programmers can use, which can be separated into three main

categories: beliefs, goals and plans. There are various different types of constructs

used in each category.

1http://jason.sourceforge.net/
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1.2.1 Beliefs

The very first thing to learn about AgentSpeak agents is how to represent the

agents’ beliefs. As we mentioned above, an agent has a belief base, which in its

simplest form is a collection of literals, as in traditional logic programming. In

programming languages inspired by logics, information is represented in symbolic

form by predicates such as:

tall(john).

which expresses a particular property - that of being tall - of an object or in-

dividual, in this case ‘John’ (the individual to whom the term john refers). To

represent the fact that a certain relationship holds between two or more objects,

we can use a predicate such as:

likes(john, music).

which, pretty obviously, states that John likes music. A literal is such a predicate

or its negation. However, unlike in classical logic, we are here referring to the

concept of modalities of truth as in the modal logic literature, rather than things

that are stated to be true in absolute terms. When a formula such as likes(john,

music) appears in an agent’s belief base, that is only meant to express the fact

that the agent currently believes that to be true; it might well be the case that

John does not like music at all.

1.2.1.1 Annotations

Perhaps one important difference in the syntactical representation of logical for-

mula in Jason compared with traditional logic programming is the use of anno-

tations. These are complex terms providing details that are strongly associated

with one particular belief. Annotations are enclosed in square brackets immedi-

ately following a literal, for example:

busy(john)[expires(autumn)].
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which, presumably, means that the agent believes that John is busy, but as soon as

autumn starts, that should be no longer believed to hold. Note that the annotation

expires(autumn) is giving us further information about the busy(john) belief in

particular.

1.2.1.2 Rules

Rules allow us to conclude new things based on things we already know. Including

such rules in an agent’s belief base can simplify certain tasks, for example in making

certain conditions used in plans more succinct. The notation is slightly different

respect to the Prolog language, the reason being that the types of formula that

can appear in the body of the rules also appear elsewhere in the AgentSpeak

language (in a plan ’context’), so we use that same notation here for the sake of

homogeneity.

Consider the following rules:

likely_color(C,B) :-

color(C,B)[source(S)] & (S == self | S == percept).

likely_color(C,B) :-

color(C,B)[degOfCert(D1)] &

not (color(_,B)[degOfCert(D2)] & D2 > D1) &

not ~color(C,B).

The first rule says that the most likely color of a box is either that which the

agent deduced earlier, or the one it has perceived. If this fails, then the likely

color should be the one with the highest degree of certainty associated with it,

provided there is no strong evidence the color of the box is not that one. To the

left of the ‘ :- ’ operator, there can be only one literal, which is the conclusion to

be made if the condition to the right is satisfied (according to the agent’s current

beliefs).

1.2.2 Goals

In agent programming, the notion of goal is fundamental. Indeed, many think

this is the essential, defining characteristic of agents as a programming paradigm.
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Whereas beliefs, in particular those of a perceptual source, express properties that

are believed to be true of the world in which the agent is situated, goals express the

properties of the states of the world that the agent wishes to bring about. Although

this is not enforced by the AgentSpeak language, normally, when representing a

goal g in an agent program, this means that the agent is committed to act so as

to change the world to a state in which the agent will, by sensing its environment,

believe that g is indeed true. This particular use of goals is referred to in the agent

programming literature as a declarative goal.

In AgentSpeak, there are two types of goals: achievement goals and test goals.

The type of goal described above is (a particular use of) an achievement goal,

which is denoted by the ‘ ! ’ operator. So, for example, we can say !own(house)

to mean that the agent has the goal of achieving a certain state of affairs in which

the agent will believe it owns a house, which probably implies that the agent does

not currently believe that ‘ own(house) ’ is true.

The fact that an agent may adopt a new goal leads to the execution of plans,

which are essentially courses of actions the agent expects will bring about the

achievement of that goal.

Perhaps an important distinction to make is with the notion of ‘goal’ as used in

Prolog, which is rather different from the notion of goal used above. A goal or ‘goal

clause’ in Prolog is a conjunction of literals that we want the Prolog interpreter

to check whether they can be concluded from the knowledge represented in the

program; the Prolog interpreter is essentially proving that the clause is a logical

consequence of the program. This is also something that we will need doing as part

of our agents - that is, checking whether the agent believes a literal or conjunction

of literals - and this is why there is another type of goal in AgentSpeak, called a test

goal and denoted by the ‘ ? ’ operator. Normally, test goals are used to retrieve

information that is available in the agent’s belief base. Therefore, when we write

?bank balance(BB), that is typically because we want the logical variable BB to

be instantiated with the specific amount of money the agent currently believes its

bank balance is.



Chapter 1. Background 9

1.2.3 Plans

An AgentSpeak plan has three distinct parts: the triggering event, the context,

and the body. Together, the triggering event and the context are called the head

of the plan. The three plan parts are syntactically separated by ‘ : ’ and ‘ <- ’

as follows:

triggering_event : context <- body.

We briefly describe what is the idea behind each part of a plan.

1.2.3.1 Triggering event

As we saw in the initial chapters, there are two important aspects of agent be-

haviour: reactiveness and pro-activeness. Agents have goals which they try to

achieve in the long term, determining the agent’s pro-active behaviour. However,

while acting so as to achieve their goals, agents need to be attentive to changes in

their environment, because those changes can determine whether the agents will be

effective in achieving their goals and indeed how efficient they will be in doing so.

More generally, changes in the environment can also mean that there are new op-

portunities for the agents to do things, and perhaps opportunities for considering

adopting new goals that they previously did not have or indeed dropping existing

goals. There are, accordingly, two types of changes is an agent’s mental attitudes

which are important in an agent program: changes in beliefs (which, recall, can

refer to the information agents have about their environment or other agents) and

changes in the agent’s goals. Changes in both types of attitudes create, within the

agent’s architecture, the events upon which agents will act. Further, such changes

can be of two types: addition and deletion. As we mentioned in the beginning

of this chapter, plans are courses of actions that agents commit to execute as a

consequence of such changes (i.e. events). The triggering event part of a plan

exists precisely to tell the agent, for each of the plans in their plan library, which

are the specific events for which the plan is to be used. If an event that took place

matches the triggering event of a plan, that plan might start to execute, provided

some conditions are satisfied. If the triggering event of a plan matches a particular

event, we say that the plan is relevant for that particular event.
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1.2.3.2 Context

As for triggering events, the context of a plan also relates to an important aspect

of reactive planning systems. We have seen that agents have goals, and plans are

used to achieve them, but also that agents have to be attentive to changes in the

environment. Dynamic environments are complicated to deal with first because

changes in the environment may mean we have to act further, but also because,

as the environment changes, the plans that are more likely to succeed in achieving

a particular goal also change. This is why reactive planning systems postpone

committing to courses of action (i.e. a plan) so as to achieve a particular goal until

as late as possible; that is, the choice of plan for one of the many goals an agent has

is only made when the agent is about to start acting upon it. Typically, an agent

will have various different plans to achieve the same goal (in addition, various

plans for different goals can be competing for the agent’s attention). The context

of a plan is used precisely for checking the current situation so as to determine

whether a particular plan, among the various alternative ones, is likely to succeed

in handling the event (e.g. achieving a goal), given the latest information the

agent has about its environment. Therefore, a plan is only chosen for execution if

its context is a logical consequence - and we discuss later exactly what that means

- of the agent’s beliefs. A plan that has a context which evaluates as true given

the agent’s current beliefs is said to be applicable at that moment in time, and is

a candidate for execution.

1.2.3.3 Body

The body of a plan, in general terms, is the easiest part of a plan to understand.

This is a sequence of formulas determining a course of action - one that will,

hopefully, succeed in handling the event that triggered the plan. However, each

formula in the body is not necessarily a ’straight’ action to be performed by the

agent’s effectors (so as to change the environment). Another important construct

appearing in plan bodies is that of a goal, this allows us to say what are the

(sub)goals that the agent should adopt and that need to be achieved in order for

that plan to handle an event successfully. We can refer to the term subgoals, given

that the plan where they appear can itself be a plan to achieve a particular goal

- recall that the triggering events allow us to write plans to be executed when the
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agent has a new goal to achieve. In fact, there are other things that can appear

in the body of a plan.

1.2.4 Agent life cycle

We now describe how the Jason engine runs an agent program. An agent operates

by means of a reasoning cycle, which can be divided into 10 main steps:

1. Perceiving the environment - The agent senses the environment so as to

update its beliefs about the state of environment.

2. Updating the belief Base - Once the list of percepts has been obtained, the

belief base needs to be updated to reflect perceived changes to the environ-

ment.

3. Receiving communication from other agents - The engine checks for messages

that might have been delivered to the agent’s “mailbox”.

4. Selecting “socially acceptable” messages - Before messages are processed,

they go through a selection process to determine whether they can be ac-

cepted by the agent or not.

5. Selecting an event - In each reasoning cycle, only one pending event will be

dealt with. Therefore, the reasoning engine needs to select an event to be

handled in a particular reasoning cycle. If the set of events turns out to be

empty (i.e. there have been no changes in the agent’s beliefs and goals since

the last event was handled), then the reasoning cycle proceeds directly to

step 9.

6. Retrieving all relevant plans - After an event has been selected, the engine

of the language should find a plan that will allow the agent to act so as

to handle that event. The first thing to do is to find, in the Plan Library

component all plans which are relevant for the given event. This is done by

retrieving all plans from the agent’s plan library that have a triggering event

that can be unified with the selected event.

7. Determining the applicable plans - The reasoning engine needs to select,

from the relevant plans, all those which are currently applicable; in order

to do this, it needs to check whether the context of each of the relevant
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plans is believed to be true; in other words, whether the context is a logical

consequence of the agent’s belief base.

8. Selecting one applicable plan - The predefined selection function chooses an

applicable plan based on the order in which they appear in the plan library.

This in turn is determined by the order in which plans are written in an

agent source code, or indeed the order in which plans are communicated to

the agent.

9. Selecting an intention for further execution - Typically an agent has more

than one intention in the set of intentions, each representing a different focus

of attention. Unless the programmer customizes this selection function, the

agent will be dividing its attention equally among all of its intentions.

10. Executing one step of an intention - The engine behaves according to each

type of formula. Recall that there are six different types of formula that can

appear in a plan body: environment action, achievement goals, test goals,

mental notes, internal actions and expressions.

Final stage before restarting the cycle - Some intentions might be in the set of

suspended intentions either waiting for feedback on action execution or waiting

for message replies from other agents. Before another reasoning cycle starts, the

engine checks whether any such feedback and replies are now available, and if so,

the relevant intentions are updated (e.g. further instantiation might occur) and

included back in the set of intentions, so that they have a chance of being selected

for further execution in the next reasoning cycle (at Step 9). The agent is now

ready to start another reasoning cycle (Step 1).

1.3 JADE

JADE2 (Java Agent DEvelopment Framework) [18] is a software Framework fully

implemented in the Java language. It simplifies the implementation of multiagent

systems through a middleware that complies with the FIPA specifications and

through a set of graphical tools that support the debugging and deployment phases.

A JADE-based system can be distributed across machines (which not even need

2http://jade.tilab.com/
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to share the same OS) and the configuration can be controlled via a remote GUI.

The configuration can be even changed at run-time by moving agents from one

machine to another, as and when required. JADE is completely implemented in

Java language and the minimal system requirement is the version 5 of JAVA (the

run time environment or the JDK).

Besides the agent abstraction, JADE provides a simple yet powerful task exe-

cution and composition model, peer to peer agent communication based on the

asynchronous message passing paradigm, a yellow pages service supporting publish

subscribe discovery mechanism and many other advanced features that facilitate

the development of a distributed system.

Thanks to the contribution of the LEAP project, ad hoc versions of JADE exist

designed to deploy JADE agents transparently on different Java-oriented environ-

ments such as Android devices and J2ME-CLDC MIDP 1.0 devices. Furthermore

suitable configurations can be specified to run JADE agents in networks charac-

terized by partial connectivity including NAT and firewalls as well as intermittent

coverage and IP-address changes.

1.3.1 Architecture

A JADE platform is composed of agent containers that can be distributed over the

network. Agents live in containers which are the Java process that provides the

JADE runtime and all the services needed for hosting and executing agents. There

is a special container, called the main container, which represents the bootstrap

point of a platform: it is the first container to be launched and all other containers

must join to a main container by registering with it.

When the main container is launched, two special agents are automatically in-

stantiated and started by JADE, whose roles are defined by the FIPA Agent

Management standard:

1. The Agent Management System (AMS) is the agent that supervises the

entire platform. It is the contact point for all agents that need to interact

in order to access the white pages of the platform as well as to manage their

life cycle. Every agent is required to register with the AMS (automatically

carried out by JADE at agent start-up) in order to obtain a valid AID.
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2. The Directory Facilitator (DF) is the agent that implements the yellow pages

service, used by any agent wishing to register its services or search for other

available services. The JADE DF also accepts subscriptions from agents

that wish to be notified whenever a service registration or modification is

made that matches some specified criteria. Multiple DFs can be started

concurrently in order to distribute the yellow pages service across several

domains. These DFs can be federated, if required, by establishing cross-

registrations with one another which allow the propagation of agent requests

across the entire federation.

1.3.2 Creating agents

Creating a JADE agent is as simple as defining a class that extends the jade.core.Agent

class and implementing the setup() method as exemplified in the code below.

import jade.core.Agent;

public class HelloWorldAgent extends Agent {
protected void setup() {

// Printout a welcome message

System.out.println("Hello World. I’m an agent!");

}
}

More appropriately a class, such as the HelloWorldAgent class shown above, rep-

resents a type of agent exactly as a normal Java class represents a type of object.

Several instances of the HelloWorldAgent class can be launched at runtime. Un-

like normal Java objects, which are handled by their references, an agent is always

instantiated by the JADE run-time and its reference is never disclosed outside the

agent itself (unless of course the agent does that explicitly). Agents never interact

through method calls but rather by exchanging asynchronous messages.

The setup() method is intended to include agent initializations. The actual job

an agent has to perform is typically carried out within “behaviours”. Examples

of typical operations that an agent performs in its setup() method are: showing a

GUI, opening a connection to a database, registering the services it provides in the

yellow pages catalogue and starting the initial behaviours. It is good practice not

to define any constructor in an agent class and to perform all initializations inside

the setup() method. This is because at construction time the agent is not yet
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linked to the underlying JADE run-time and thus some of the methods inherited

from the Agent class may not work properly.

1.3.2.1 Agent identifiers

Consistent with the FIPA specifications, each agent instance is identified by an

“agent identifier”. In JADE an agent identifier is represented as an instance of

the jade.core.AID class. The getAID() method of the Agent class allows re-

trieval of the local agent identifier. An AID object includes a globally unique

name (GUID) plus a number of addresses. The name in JADE has the form

<local-name>@<platform-name> such that an agent called Peter living on a plat-

form called foo-platform will have Peter@foo-platform as its globally unique

name. The addresses included in the AID are the addresses of the platform the

agent inhabits. These addresses are only used when an agent needs to communi-

cate with another agent living on a different compliant FIPA platform.

The AID class provides methods to retrieve the local name (getLocalName()), the

GUID (getName()) and the addresses (getAllAddresses()).

We can therefore enrich the welcome message of our HelloWorldAgent as follows:

protected void setup() {
// Printout a welcome message

System.out.println("Hello World. I’m an agent!");

System.out.println("My local−name is "+getAID().getLocalName());

System.out.println("My GUID is "+getAID().getName());

System.out.println("My addresses are:");

Iterator it = getAID().getAllAddresses();

while (it.hasNext()) {
System.out.println("− "+it.next());

}
}

The local name of an agent is assigned at start-up time by the creator and must be

unique within the platform. If an agent with the same local name already exists

in the platform, the JADE runtime prevents the creation of the new agent.

String localname = "Peter";

AID id = new AID(localname, AID.ISLOCALNAME);
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The platform name is automatically appended to the GUID of the newly created

AID by the JADE runtime. Similarly, knowing the GUID of an agent, its AID can

be obtained as follows:

String guid = "Peter@foo−platform";
AID id = new AID(guid, AID.ISGUID);

1.3.2.2 Agent initialization

The HelloWorldAgent class described previously can be compiled, as with normal

Java classes, by typing:

javac -classpath <JADE-classes> HelloWorldAgent.java

Of course the JADE libraries must be in the Classpath for the compilation to

succeed. At that point, in order to execute a Hello World agent, i.e. an instance

of the HelloWorldAgent class, the JADE runtime must be started and a local

name for the agent to execute must be chosen:

java -classpath <JADE-classes>;. jade.Boot Peter:HelloWorldAgent

This command starts the JADE runtime and tells it to launch an agent whose

local name is Peter and whose class is HelloWorldAgent. Again both the JADE

libraries and the HelloWorldAgent class must be in the Classpath. As a result of

the typed command, the following printouts produced by the Hello World agent

should appear.

Hello World. I’m an agent!

My local-name is Peter

My GUID is Peter@anduril:1099/JADE

My addresses are:

- http://anduril:7778/acc

1.3.2.3 Agent tasks

The actual job, or jobs, an agent has to do is carried out within “behaviours”. A

behaviour represents a task that an agent can carry out and is implemented as an
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object of a class that extends jade.core.behaviours.Behaviour. To make an

agent execute the task implemented by a behaviour object, the behaviour must be

added to the agent by means of the addBehaviour() method of the Agent class.

Behaviours can be added at any time when an agent starts up (in the setup()

method) or from within other behaviours. Each class extending Behaviour must

implement two abstract methods. The action() method defines the operations

to be performed when the behaviour is in execution. The done() method returns

a boolean value to indicate whether or not a behaviour has completed and is to

be removed from the pool of behaviours an agent is executing.

Behaviour scheduling and execution. An agent can execute several be-

haviours concurrently. However, it is important to note that the scheduling of

behaviours in an agent is not pre-emptive (as for Java threads), but cooperative.

This means that when a behaviour is scheduled for execution its action() method

is called and runs until it returns. Therefore it is the programmer who defines

when an agent switches from the execution of one behaviour to the execution of

another.

This approach often creates difficulties for inexperienced JADE developers and

must always be kept in mind when writing JADE agents. Though requiring an

additional effort, this model does have several advantages:

• It allows a single Java thread per agent which is quite important especially

in environments with limited resources such as cellphones.

• It provides improved performance since behaviour switching is far faster than

Java thread switching.

• It eliminates all synchronization issues between concurrent behaviours ac-

cessing the same resources since all behaviours are executed by the same

Java thread. This also results in a performance enhancement.

• When a behaviour switch occurs, the status of an agent does not include

any stack information, implying that it is possible to take a ‘snapshot’ of it.

This allows the implementation of some important advanced features, such

as saving the status of an agent in a persistent storage for later resumption

(agent persistency), or transferring the agent to another container for remote

execution (agent mobility).
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It is important to note that a behaviour such as that shown below will prevent

any other behaviour from being executed because its action() method will never

return.

public class OverbearingBehaviour extends Behaviour {
public void action() {

while (true) {
// do something

}
}
public boolean done() {

return true;

}
}

One-shot behaviour, cyclic behaviour and generic behaviours. The

three primary behaviour types available with JADE are as follows:

1. One-shot behaviours are designed to complete in one execution phase; their

action() method is thus executed only once.

The jade.core.behaviours.OneShotBehaviour class already implements

the done() method by returning true and can be conveniently extended to

implement new one-shot behaviours.

public class MyOneShotBehaviour extends OneShotBehaviour {
public void action() {

// perform operation X

}
}

In this example, operation X is performed only once.

2. Cyclic behaviours are designed to never complete; their action() method ex-

ecutes the same operations each time it is called.

The jade.core.behaviours.CyclicBehaviour class already implements the

done() method by returning false and can be conveniently extended to im-

plement new cyclic behaviours.

public class MyCyclicBehaviour extends CyclicBehaviour {
public void action() {

// perform operation Y

}
}
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In this example, operation Y is performed repetitively until the agent exe-

cuting the behaviour terminates.

3. Generic behaviours embed a status trigger and execute different operations

depending on the status value. They complete when a given condition is

met.

public class ThreeStepBehaviour extends Behaviour {
private int step = 0;

public void action() {
switch (step) {

case 0:

// perform operation X

step++;

break;

case 1:

// perform operation Y

step++;

break;

case 2:

// perform operation Z

step++;

break;

}
}
public boolean done() {

return step == 3;

}
}

In this example, the step member variable implements the status of the

behaviour. Operations X, Y and Z are performed sequentially after which the

behaviour completes.

JADE also provides the possibility of composing behaviours together to create

complex behaviours.

Scheduling operations. JADE provides two ready-made classes

(in the jade.core.behaviours package) which can be implemented to produce

behaviours that execute at selected points in time.
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1. The WakerBehaviour has action() and done() methods pre-implemented

to execute the onWake() abstract method after a given timeout (specified in

the constructor) expires. After the execution of the onWake() method the

behaviour completes.

public class MyAgent extends Agent {
protected void setup() {

System.out.println("Adding waker behaviour");

addBehaviour(new WakerBehaviour(this, 10000) {
protected void onWake() {

// perform operation X

}
});

}
}

In this example, operation X is performed 10 seconds after the ’Adding

waker behaviour’ text is printed.

2. The TickerBehaviour has action() and done() methods pre-implemented

to execute the onTick() abstract method repetitively, waiting a given period

(specified in the constructor) after each execution. A TickerBehaviour

never completes unless it is explicitly removed or its stop() method is called.

public class MyAgent extends Agent {
protected void setup() {

addBehaviour(new TickerBehaviour(this, 10000) {
protected void onTick() {

// perform operation Y

}
});

}
}

In this example, operation Y is performed periodically every 10 seconds.

1.4 Techniques for checking the system’s behaviour

There are two main approaches in order to check the system’s behaviour. The first

approach discussed is model checking, it is a static technique in bug detection that

perform error checking statically, without running the program. Model checking
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[37, 73] on the other hand computes the run-time states of the program without

running the program. The second approach discussed is runtime verification, which

unlike the static verification approaches as model checking it checks the correctness

of a program, running the program.

1.4.1 Model checking

Model checking [37] is a technique for verifying finite state concurrent systems

such as sequential circuit designs and communication protocols. It has a number

of advantages over traditional approaches that are based on simulation, testing,

and deductive reasoning. In particular, model checking is automatic and usually

quite fast. Also, if the design contains an error, model checking will produce

a counterexample that can be used to pinpoint the source of the error. The

method, which was awarded the 1998 ACM Paris Kanellakis Award for Theory

and Practice, has been used successfully in practice to verify real industrial designs,

and companies are beginning to market commercial model checkers.

Figure 1.1: Model checking procedure

The main challenge in model checking is dealing with the state space explosion

problem. This problem occurs in systems with many components that can interact

with each other or systems with data structures that can assume many different

values. In such cases the number of global states can be enormous. Researchers

have made considerable progress on this problem over the last ten years.

Below we report the main advantages and disadvantages in the use of model check-

ing technique [36].
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Main advantages of model checking:

• the user does not need to construct a correctness proof;

• it is fast compared to other rigorous methods such as the use of a proof

checker;

• if the specification is not satisfied, the model checker will produce a coun-

terexample execution trace that shows why the specification does not hold;

• it has no problem with partial specifications;

• it supports Temporal Logics which can easily express many of the properties

that are needed for reasoning about concurrent systems, this is important

because reasoning on the concurrency is often quite subtle and it is difficult

to verify all possible cases manually.

Main disadvantages of model checking:

• Writing specifications is hard. This is also true for other verification tech-

niques like automated theorem proving (this also occurs in the runtime ver-

ification context).

• State explosion is a major problem. The number of global system states of a

concurrent system with many processes or complicated data structures can

be enormous. All model checkers suffer from this problem. In fact, the state

explosion problem has been the driving force behind much of the research in

model checking and the development of new model checkers.

1.4.2 Runtime verification

Runtime verification is being pursued as a lightweight verification technique com-

plementing verification techniques such as model checking and testing and estab-

lishes another trade-off point between these forces. One of the main distinguishing

features of runtime verification is due to its nature of being performed at runtime,

which opens up the possibility to act whenever incorrect behaviour of a software

system is detected.
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We follow [47, 66] and define a software failure as a deviation between the observed

behaviour and the required behaviour of the software system. A fault is defined as

the deviation between the current behaviour and the expected behaviour, which

is typically identified by a deviation of the current and the expected state of the

system. A fault might lead to a failure, but not necessarily. An error, on the

other hand, is a mistake made by a human that results in a fault and possibly

in a failure. According to IEEE [2], verification comprises all techniques suitable

for showing that a system satisfies its specification. Traditional verification tech-

niques comprise theorem proving [19], model checking [37], and testing [27, 78].

A relatively new direction of verification is runtime verification, which manifested

itself within the previous years as a lightweight verification technique.

Definition 1.1. Runtime verification [66] is the discipline of computer science that

deals with the study, development, and application of those verification techniques

that allow checking whether a run of a system under scrutiny satisfies or violates

a given correctness property.

In runtime verification (RV) dynamic checking of the correct behaviour of a system

can be performed by a monitor which is generated from a formal specification of

the properties to be verified.

As happens for formal static verification, RV relies on a high level specification

formalism to specify the expected properties of a system; similarly to testing, RV is

a lightweight, effective but non exhaustive technique to verify complex properties

of a system at runtime.

In contrast to formal static verification and testing, RV offers opportunities for

error recovery which make this approach more attractive for the development of

reliable software: not only a system can be constantly monitored for its whole life-

time to detect possible misbehavior, but also appropriate handlers can be executed

for error recovery.

Main advantages of runtime verification:

• it ensures that the system may be stopped the moment issues are identified

in a tractable manner;

• verification is not invasive, the system running is not affected by the presence

of the monitor, this is because the monitor does not need to generate the
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traces that have to checked (in this way the state explosion problem, which

is typical of the static verification, does not happen);

• verification continues beyond system deployment.

Main disadvantages of runtime verification:

• it cannot prevent a wrong execution to take place, as it only verifies actual,

already happened, traces of events.

1.4.3 Runtime verification versus Model checking

Runtime verification [66] has its origins in model checking, and, to a certain extend,

the key problem of generating monitors is similar to the generation of automata in

model checking. However, there are also important differences to model checking:

• While in model checking, all executions of a given system are examined to

answer whether they satisfy a given correctness property ϕ, which corre-

sponds to the language inclusion problem, runtime verification deals with

the word problem.

• While model checking typically considers infinite traces, runtime verification

deals with finite executions - as executions have necessarily to be finite.

• While in model checking a complete model is given allowing to consider

arbitrary positions of a trace, runtime verification, especially when dealing

with online monitoring, considers finite executions of increasing size. For

this, a monitor should be designed to consider executions in an incremental

fashion.

These differences make it necessary to adapt the concepts developed in model

checking to be applicable in runtime verification. For example, while checking

a property in model checking using a kind of backwards search in the model is

sometimes a good choice, it should be avoided in online monitoring as this would

require, in the worst case, the whole execution trace to be stored for evaluation.

Furthermore, model checking suffers from the state explosion problem, which terms

the fact that analyzing all executions of a system is typically been carried out by
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generating the whole state space of the underlying system, which is often huge.

Considering a single run, on the other hand, does usually not yield any mem-

ory problems, provided that when monitoring online only a finite history of the

execution has to be stored. Last but not least, in online monitoring, the com-

plexity for generating the monitor is typically negligible, as the monitor is often

only generated once. However, the complexity of the monitor, i. e. its memory

and computation time requirements for checking an execution are of important

interest, as the monitor is part of the running system and should influence the

system as less as possible.

1.5 LTL

LTL is a modal logic which has been introduced for specifying temporal properties

of systems; despite its original main application is static verification through model

checking, more recently it has been adopted as a specification formalism for RV,

and some RV tools support it [34, 67].

1.5.1 LTL syntax and semantics

Given a finite set of atomic propositions AP , the set of LTL formulas over AP is

inductively defined as follows:

• true is an LTL formula;

• if p ∈ AP then p is an LTL formula;

• if ϕ and ψ are LTL formulas then ¬ψ, ϕ∨ψ, Xψ, and ϕUψ are LTL formulas.

Additional operators can be derived in the standard way: ϕ∧ψ = ¬(¬ϕ∨¬ψ),

ϕ⇒ ψ = ¬ϕ∨ψ, Fϕ (or ♦ϕ) = true Uϕ, and Gϕ (or �ϕ) = ¬(true U¬ϕ).

Let Σ = 2AP be the set of all possible subsets of AP ; if p ∈ AP and a ∈ Σ, then p

holds in a iff p ∈ a. An LTL model is an infinite trace w ∈ Σω; w(i) denotes the

element a ∈ Σ at position i in trace w; more formally, if w = aw′, then w(0) = a,

and w(i) = w′(i− 1) if i > 0.
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The semantics of a formula ϕ depends by the satisfaction relation w, i � ϕ (w

satisfies ϕ in i) defined as follows:

• w, i � p iff p ∈ w(i);

• w, i � ¬φ iff w, i 2 φ;

• w, i � ϕ ∨ ψ iff w, i � ϕ or w, i � ψ;

• w, i � Xϕ iff w, i+ 1 � ϕ (next operator);

• w, i � ϕUψ iff ∃j ≥ 0 w, j � ψ and ∀0 ≤ k < j w, k � ϕ (until operator).

Finally, w � ϕ (w satisfies ϕ) holds iff w, 0 � ϕ holds.

We recall that the set of all models of LTL formulas is the language of star-free

ω-regular languages over Σ [38].

In order to encode an LTL formula into an equivalent trace expression we exploit

the result stating that an LTL formula can be translated into an equivalent non

deterministic Büchi automaton [17].

1.5.2 Non deterministic Büchi automata

A Büchi automaton is a type of ω-automaton which extends a finite automaton

to infinite inputs. It accepts an infinite input sequence if there exists a run of the

automaton that visits (at least) one of the final states infinitely often.

A (non deterministic) Büchi automaton (NBA) is a tuple (Σ, Q,Q0, δ, F ), where

• Σ is a finite alphabet;

• Q is a finite non-empty set of states;

• Q0 ⊆ Q is a set of initial states;

• δ:Q× Σ→ 2Q is a transition function;

• F ⊆ Q is a set of accepting states.
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A run of an automaton (Σ, Q,Q0, δ, F ) on a word w ∈ Σω is an infinite trace

ρ = q0w(0)q1w(1)q2 . . ., s.t. q0 ∈ Q0, and for all i ≥ 0 qi+1 ∈ δ(qi, w(i)). A run

ρ is called accepting iff Inf (ρ) ∩ F 6= ∅, where Inf (ρ) denotes the states visited

infinitely often.

1.5.3 LTL3

LTL3 is a a three-valued semantics [17] for LTL formulas, devised to adapt the

standard semantics to RV, to correctly consider the limitation that at runtime

only finite traces can be checked.

Given a finite trace σ ∈ Σ∗ of length |σ| = n, a continuation of σ is an infinite

trace w ∈ Σω s.t. for all 0 ≤ i < n w(i) = σ(i).

Given a finite trace σ ∈ Σ∗, and an LTL formula ϕ, the LTL3 semantics of ϕ,

denoted by σ �3 ϕ, is defined as follows:

σ �3 ϕ =


> iff w � ϕ for all continuations w of σ

⊥ iff w 2 ϕ for all continuations w of σ

? iff neither of the two conditions above holds

As an example, let us consider the formula ϕ = pUq, where p, q ∈ AP ; according to

the definition above, {p}{p}{q} �3 ϕ = >, that is, ϕ is satisfied by the finite trace

{p}{p}{q}, and monitoring succeeds; {p}{p}∅ �3 ϕ = ⊥, that is, ϕ is not satisfied

by the finite trace {p}{p}∅, and monitoring fails; finally, {p}{p}{p} �3 ϕ =?, that

is, at this stage monitoring is inconclusive, and the monitor has to keep monitoring

the property expressed by ϕ. Assuming that AP = {p, q}, the LTL3 semantics of

pUq corresponds to the finite state machine (FSM) defined in Figure 1.2, which

fully determines the expected behaviour of a monitor for the RV of pUq.

More in general, for all LTL formulas ϕ, it is possible to build an FSM which is

a deterministic finite automaton (DFA) where the alphabet is Σ (that is, 2AP),

all states are final, each state returns either > (successful), or ⊥ (failure), or

? (inconclusive), and the behaviour of the FSM respects the LTL3 semantics of

ϕ: for all finite traces σ ∈ Σ∗, the FSM accepts σ with final state that returns

v ∈ {>,⊥, ?} iff σ �3 ϕ = v.
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?start

>⊥

{p}

∅

{p, q}

{q}
∅

{p} {p, q}

{q}

∅

{p} {p, q}

{q}

Figure 1.2: FSM of the monitor for pUq, with AP = {p, q}

The sequence of steps required to generate from an LTL formula ϕ an FSM that

respects the LTL3 semantics of ϕ [17] is summarized in Figure 1.3

Input (1)Formula (2)NBA (3)Emptiness per state (4)NFA (5)DFA (6)FSM

ϕ // Aϕ // Fϕ // Âϕ // Ãϕ
))

ϕ

55

))

Mϕ

¬ϕ // A¬ϕ // F¬ϕ // Â¬ϕ // Ã¬ϕ
55

Figure 1.3: Steps required to generate an FSM from an LTL formula ϕ

For each LTL formula ϕ and ¬ϕ (1), the equivalent NBAs Aϕ, and A¬ϕ are built

(2), all states that generate a non empty language are identified (3) and made

final and the NBAs are transformed into the corresponding NFAs Âϕ, and Â¬ϕ

(4), and, then, in the equivalent DFAs Ãϕ and Ã¬ϕ (5). Finally, the product of Ãϕ

and Ã¬ϕ is computed, and from it the final FSMMϕ is derived by minimization,

and by classifying the states in the following way: (q, q′) returns > iff q′ is not

final in Ã¬ϕ, ⊥ iff q is not final in Ãϕ, and ? if both q and q′ are final in Ãϕ, and

Ã¬ϕ, respectively.

1.6 Constrained Global Types

Constrained global types [3, 7, 71] are behavioral types for specifying and verify-

ing multiparty protocols involving many distributed components, inspired by the
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process algebra approach.

In [3] constrained global types have been used to generate monitor agents which

were able to check the behaviour of other agents inside the system. Given a

protocol expressed using constrained global types, monitors are able to verify the

compliance of agents to the protocol3.

Before explaining in greater detail the syntax and the semantics of constrained

global types we must introduce two key concepts: events and event types.

Events. An event e is any observable event taking place in the MAS envi-

ronment, including communicative actions, actions performed by agents, agent

location and moves, and actions performed by artifacts. We do not face the trans-

duction problem and assume that events are translated into symbols that agents

can manipulate by some mediator between the agents and the environment.

Event types. From a logical point of view, an event type ϑ is a predicate on

events. Its interpretation is the set of events that verify ϑ; we write e ∈ ϑ to mean

that ϑ is true on e, and we also say that e has type ϑ.

We can better explain the event types with an example:

transport(policeman(marcus), prisoner(alice),

from(jail), to(room1), by(car))

∈ move(alice, jail, room1).

With respect to the actual event that took place in the environment and that

was transduced into a symbolic form, the event type may an be identified by a dif-

ferent functor symbol with different arguments (like in example, where “move(...)”

is the event type of a “transport(..)” event) and may abstract some details which

are not relevant for the monitoring activities.

1.6.1 Syntax

The protocol specification using constrained global types represents a set of pos-

sibly infinite traces of events and is defined on top of the following operators:

3More details are given in Chapter 3.
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• λ (empty trace), representing the singleton set {ε} containing the empty trace ε

of events.

• ϑn:τ (sequence with producer), representing the set of all traces whose first event

e matches the event type ϑ (e ∈ ϑ), and the remaining part is a trace in the set

represented by τ . The integer n specifies the least required number of times e ∈ ϑ
has to be “consumed” to allow a transition labeled by e. Each occurrence of a

producer event type must correspond to the occurrence of a new event; in contrast,

consumer event types correspond to the same event specified by a certain producer

event type. The purpose of consumer event types is to impose constraints between

branches of the fork operator, without introducing new events.

• ϑ:τ (sequence with consumer), representing the set of all traces where e ∈ ϑ,

and the remaining part is a trace in the set represented by τ . ϑ must match with

a producer ϑn event type available in another fork branch of the protocol.

• τ1+τ2 (choice), representing the union of the traces of τ1 and τ2.

• τ1 |τ2 (fork), representing the set obtained by shuffling the traces in τ1 with the

traces in τ2.

• τ1 · τ2 (concat), representing the set of traces obtained by concatenating the

traces of τ1 with those of τ2.

Constrained global types are regular terms, that is, can be cyclic (recursive), and

hence they can be represented by a finite set of syntactic equations. To make the

treatment simpler, we limit our investigation to contractive (a.k.a. guarded) and

deterministic constrained global types. A constrained global type τ is contractive if

all infinite paths4 in τ contain an occurrence of the “:” constructor. Determinism

ensures that dynamic checking can be performed efficiently without backtracking.

Intuitively, a constrained global type is deterministic if, in case more transition

rules can be applied when event e takes place, they lead to equivalent constrained

global types.

4By “path of a constrained global type” we mean “path in the possibly infinite tree corre-
sponding to the term that represents the constrained global type”.
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1.6.2 Semantics

The state of a constrained global type τ can be represented by τ itself. In this

section, when talking about constrained global types we will refer to their current

state. Also, we will use “constrained global type” and “protocol” interchangeably.

The interpretation of a constrained global type is based on the notion of transition,

a total function

next : N×Pr×Event → Pfin (Pr×N),

where Pr and Event denote the set of contractive and constrained global types

and of events, respectively. The first argument of next is the number used by

the sequence with producer operator, it is necessary when the protocol requires

synchronization among some events.

If τ1 represents the current state of the protocol and the event e takes place, then

the protocol can move to τ2 iff next(0, τ1, e) = (τ2, 0), that we write as τ1
e τ2.

The auxiliary function ε( ) specifies the constrained global types whose interpre-

tation contains the empty sequence ε. Intuitively, a constrained global type τ s.t.

ε(τ) holds specifies a protocol that is allowed to successfully terminate.

Let τ0 be a contractive and constrained global type. A run ρ for τ0 is a sequence

τ0
e0 τ1

e1 ...
en−1

τn
en τn+1

en+1
... such that (1) either the sequence

is infinite, or it has finite length k ≥ 0 and the last constrained global type τk

verifies ε(τk); and (2) for all τi , ei , and τi+1 in the sequence, τi
ei τi+1 holds.

We denote by A(ρ) the possibly empty or infinite sequence of events e0e1...en...

contained in ρ. The interpretation Jτ0K of τ0 is the set {A(ρ)|ρ is a run for τ0}. A

contractive constrained global type τ is deterministic if for e any possible run ρ of

τ and any possible τ ′ in ρ, if τ ′
e−→ τ ′′, and τ ′

e−→ τ ′′′, then Jτ ′′K = Jτ ′′′K.
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Related work

Our work falls both in the research area on self-adaptive systems and on runtime

verification (runtime monitoring) of MASs.

Self-adaptive systems:

The self-adaptive systems spun off from the wider area of distributed systems,

be them based on web services, software agents, robots, or on other autonomous

entities that need to react to unforeseen changes during their execution. Many

surveys have been conducted to identify the main features of self-adaptive MASs

[49, 57, 83, 91, 94] and interesting and original solutions have been proposed by

the research community.

Proposals for standardizing the concepts involved in the self-adaptation process

include [65], a meta-model to describe intelligent adaptive systems in open envi-

ronments, and [29], a taxonomy of adaptive agent-based collaboration patterns,

for their analysis and exploitation in the area of autonomic service ensembles. An

analysis of linguistic approaches for self-adaptive software is presented in [85].

As far as the engineering of self-adaptive systems is concerned, authors either pro-

pose new methods and platforms or extend already existing methodologies. In the

first category we mention the AMAS theory (Adaptive multiagent Systems [30]),

which identifies design criteria to enable the emergence of an organization within

the system and to guarantee the global function of the system even in critical sit-

uations, Unity [88], a decentralized architecture for autonomic computing based

on multiple interacting agents, and DSOL [43], a declarative approach supporting

dynamic service orchestration at run-time. As good representatives of the second

32
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category we may mention [33], based on Gaia [95], and [44, 77], based on Tropos

[26].

The approaches closer to ours focus on formalizing protocols that the agents may

use during their life, including specific protocols to deal with unforeseen events: in

these approaches agents are usually free to choose, from a bunch of usable proto-

cols, which one they prefer, maintaining in this way the freedom to autonomously

self adapt to the new situation but ensuring at the same time that a feasible inter-

action pattern is followed. Our work can be included in this research field, where

we can speak of “protocol enforcement” or “protocol-driven agents”. There are at

least three ways to obtain a protocol-driven behaviour:

1. automatically generating the agent’s code from the protocol specification in

order to ensure the compliance by construction;

2. monitoring the agents interactions to identify a violation and enforcing a re-

covery;

3. making agents capable of directly executing or interpreting the formal protocol

specification.

Proposals following the first approach received the attention from the community

since the Agent-Oriented Software Engineering early days. The PASSI methodol-

ogy [40] allows the designer to generate the agent’s structure and its internal code

starting from UML models and a similar functionality is offered by Prometheus

[80]; West2East [31] offers libraries for both the translation of protocols represented

in FIPA AUML1 into different textual notations, and the automatic generation of

an executable program compliant to the original interaction protocol; Dsml4Mas

[89] can be used to design protocols following a model-driven approach for gener-

ating executable code from protocol specifications [60].

The second approach is discussed for example in [28], where a mechanisms for

monitoring norms is proposed, in [59], where the global-level adaptation is based

on the monitoring of the system’s behaviour and on a dynamic reification of an

organizational structure, and in [46], where a form of agent supervision, which

constrains the actions of an agent so as to enforce certain desired behavioral spec-

ifications, is presented.

1www.auml.org/auml/documents/ID-03-07-02.pdf.

www.auml.org/auml/documents/ID-03-07-02.pdf
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We followed the third approach, namely allowing agents to directly executing or

interpreting the protocol. The related literature we are aware of is all centered

around protocols conceived as first class entities and represented by means of

commitments. For example in [12] commitment protocols can be directly accessed

by the agents, as they are artifacts available in the platform, whereas in [93] agents

use a “commitments plus axioms” protocol representation that enables them to

flexibly accommodate the exceptions and opportunities that may arise at run time.

A framework for modeling and handling exceptions is presented in [69] and in

successive works by Singh et al. [56, 87], where a formal methodology is proposed

to manage, even at run time, expected and unexpected exceptions in commitment-

based MASs. Although these approaches are close to ours in spirit, commitment

protocols are definitely different from constrained global types, which are inspired

by global and multiparty session types [32] and include no notion of commitment.

Also, extending existing agent environments or languages by implementing our

framework on top of them should be always possible as long as these environments

meet the few – and almost mandatory for any MAS. Implementing an approach

based on commitment protocols, instead, requires a paradigm shift, where agents

are designed and implemented adhering to the commitment approach.

In [74–76] interaction protocols are modeled as executable entities that can be

referenced, inspected, composed, shared, and invoked between agents. TheRASA
formalism defined in those papers is close to ours, even if its expressiveness is lower

as no fork operator is supported. Also, no exploitation of the framework on top

of real agent systems is presented.

As far as self-adaptiveness of protocol-driven agents is concerned, the main sources

of inspiration were [35, 39, 81, 82]. In [35] the authors propose a dynamic self-

monitoring and self-regulating approach based on norms to express properties

which allow agents to control their own behaviour. In [81] and [82] agents operating

in open and heterogeneous MASs dynamically select protocols, represented in

FIPA AUML, in order to carry collaborative tasks out. Since the selection is

performed locally to the agent, some errors may occur in the process. The proposed

mechanism provides the means for detecting and overcoming them.

Our work is similar to [39] both in the formalism used to represent protocols and

in the idea of dynamic protocol switch, but our solution is actually implemented

and thus must take many more practical aspects - for example what to do before

switching to a new protocol, how to state when the agent is in a safe state and
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can actually perform a protocol switch - into account.

Comparison. To the best of our understanding, none of the mentioned approaches

covers the three stages of starting from a global description of the protocol, moving

to local versions for the individual agents via projection, and interpreting these

local versions on an actual agent framework to drive the agents’ behaviour, as we

do. One reason why our approach is different from others, is that the projection

function takes protocol specifications and returns protocol specifications expressed

in the same language. Usually, projection functions return either agent stubs/code

(common in the MAS community) or protocol specifications in a language suitable

for expressing the agent local viewpoint, different from the language for express-

ing the global one (common in the session types community). Having a unique

formalism for protocol specification both at the global and at the local level is a

simpler and more uniform approach.

In the MAS area, when the code of an agent is generated from a protocol specifi-

cation, the language used for specifying the interaction protocol and the language

used for implementing the agents are, again, different. The agent is “compiled”

into some AOP language starting from the protocol’s specification. On the con-

trary we do not generate any agent code into any AOP language. The protocol

specification is interpreted and this gives the flexibility that meta-programming en-

sures, demonstrated for example by the easiness in implementing protocol switch.

Finally, w.r.t. our own previous work, in [3] and [8] (resp. [4]) we proposed to

exploit the interaction protocol formalism (resp. the protocol projection mecha-

nism) as a way to face (resp. to make more efficient) the runtime verification of

protocol compliance via monitoring. Also, issues like self-adaptiveness, protocol

driven agents, protocols as first class entities and protocol switch are not addressed

by [3, 4, 8]. This thesis and the previous papers share the adoption of the same

formalism (constrained global types) and tools (projection and next functions),

but used for definitely different purposes.

Runtime monitoring of distributed systems:

Considering that our work is mainly focused on protocol-driven systems, the anal-

ysis in the runtime monitoring context is much less detailed.
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As analyzed in [58], the most research in runtime monitoring has focused on mono-

lithic software as opposed to distributed systems. There has been some research

in monitoring distributed systems; Mansouri-Samani and Sloman overview this

research area (up to 1992) [70].

Bauer et al. describe a distributed system monitoring approach for local properties

that require only a trace of the execution at the local node [16]. Each node checks

that specific safety properties hold and if violated, sends a report to a centralized

diagnosis engine that attempts to ascertain the source of the problem and to

steer the distributed system to a safe state. The diagnosis engine, being globally

situated, collects the verdict from observations of local traces and forms a global

view of the system to render a diagnosis of the source of the error.

Bhargavan et al. [20, 21] focus on monitoring distributed protocols such as TCP.

They employ black-box monitors that have no knowledge of the internal state of

the executing software, which is the same approach followed by our framework.

Their monitors view traffic on the network, mimic the protocol actions in response

to observed input, and compare the results to outputs observed on the network. A

domain specific language, Network Event Recognition Language (NERL), is used

to specify the events on the network that they wish to monitor and a specialized

compiler generates a state machine to monitor for these events [21].

In Fornara et al. [54, 55, 79] the authors discuss their approach based on Normative

MAS. An artificial institution catches the institutional events and verifies them

with respect to a normative specification. As a result, protocol specifications are a

special case with respect to a normative specification. So, even if the approach is

different the aim is similar, i.e. to deal with open multiagent systems and monitor

their correctness w.r.t. a specification.

Normative system approaches offer other advantages for multi agent systems be-

cause agents may integrate their practical reasoning with reasoning about the

normative specification, although, also our protocol-driven agents could reason

about trace expressions which are a First Class Entities.

Other closely related proposals are those by Criado et al. [42] and Baldoni et al.

[13–15, 68]; in these papers, the authors suggest a way to implement a monitoring

mechanism by exploiting the A&A metamodel and by reifying commitment-based

protocols into artifacts. The proposal is implemented both on top of Cartago and

Jade and on top of Jason/JaCaMo. However, our work is different from theirs,
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because – at least from the runtime verification application – our approach is more

generic, in fact, it works with each possible MASs architecture and not with only

certain customized implementations.



Chapter 3

The framework

In the previous chapters, we have already discussed the importance of runtime

verification of a MAS (that has always the peculiarity of being a distributed and

complex system).

In this chapter, we illustrate our framework without going into technical details.

It consists of three different building blocks that, if properly assembled, allow us

to realize systems on which the verification process is more and more distributed

and can be carried out earlier.

In the following sections, we present the high-level framework1, starting from the

less distributed setting, where one monitor checks all other agents and arriving

to the most distributed setting, where each agent has its own monitor. The most

distributed and safe setting, where verification takes place in such an early stage

of the process that executing bad actions is even prevented, is the one where the

monitor is fully integrated within the agent, and checks what the agent can do

before it actually does it.

3.1 Building blocks

In order to describe our framework, we start with introducing its three building

blocks:

1Without dwelling on all technical aspects which will be discussed later in the document.

38
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• the formalism, that represents a protocol which describes a pattern of ob-

servable events;

• the next transition function that, given an observed event, defines how to

move from a protocol state to the next one (or, in case it is used to generate,

and not to verify, it defines the events which are allowed and where it leads

inside the protocol states);

• the project function that, given a global protocol and a subset of agents,

returns a new protocol corresponding to a local view which involves only the

subset of selected agents.

3.1.1 The formalism

The formalism, as its name suggests, is the language which allows us to formulate

our protocols. There are many formalisms that can be used; in particular we can

summarize them with:

• constrained global types,

• trace expressions and

• template trace expressions.

The first one was presented in Section 1.6 and the last two will be presented in

Chapter 4.

Intuitively, the formalism represents the state of a multiagent protocol from which

several transition steps to other states (that is, to other states of the protocol

represented with the same formalism) are possible, with a resulting event.

When we speak about a protocol, unless it is stated otherwise, we consider a global

view where the behaviour of all agents must be specified.

3.1.2 The next transition function

As already highlighted in Section 1.6, given a state representing the current pro-

tocol situation, we can move to other states. Compared to the next function intro-

duced in Section 1.6, we present a high-level version omitting all aspects which are
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related to a particular formalism (the number used for synchronizations is present

only in the constrained global types formalism).

The function which allows us to do this is the next transition function, which is

defined as:

next: Pr × Event → Pfin(Pr)

where:

• Pr is the set of protocols expressed using one of the formalisms introduced

in the previous section;

• Event is the set of events which can be observed (or generated) inside our

system.

The next transition function takes a protocol and an observed event ∈ Event2 and

returns a new set of protocols3

To make some examples4:

next(α:Pr1, a)=Pr1 if a ∈ α5

next(Pr1+Pr2, a)=Pr3 if next(Pr1, a)=Pr3 or next(Pr2, a)=Pr3

It is important to note that Pr represents a set of global protocols and given a

global protocol, the next transition function returns another global protocol. In

order to make the process more distributed, we must introduce the last building

block of our framework.

3.1.3 The project function

With a global protocol, we can represent the behaviour of each agent inside the

system. In this way, if we only have one monitor which checks the entire system, it

is correct that all the information collapses in the protocol representation (which

2As already said, an event can be an action, a message, etc. In our examples however, for
practical reasons, all events correspond to a message exchange.

3In this way, given a well-defined protocol and an observed (or generated) event, the next
transition function is nondeterministic; this will become clearer in Chapter 4.

4Here we omit all the formal details that will be widely analyzed in Chapter 4.
5In Section 1.6 we have already introduced events and event types; in this case we wonder if

the event a belongs to the event type α.
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encodes what all agents can or cannot do). However, in a MAS the distribution

of the runtime verification is extremely important and it is necessary to split up

the workload among multiple monitors.

Given a global protocol, the project function returns a local view of it. If we take,

for instance, a global protocol on the set of agents {agent1, agent2, agent3}, it

allows us to represent all event traces involving agent1, agent2 and agent3. We

can use the project function passing the protocol and the subset {agent1, agent3}
in order to obtain a local view of the protocol representing only the event traces

involving at least agent1 or agent3. It is important to note that the event traces

represented by the projected protocol do not involve only the agents passed to the

project function. For example, if we have an event involving agent1 and agent2, it

would still be present in the projected protocol.

The project function is defined in the following way:

project: Pr × P(Agents) → Pr

The project function allows us to distribute the protocol among more monitors

instead of only one, as will become clearer in the following.

3.2 Playing LEGO with the building blocks

In the previous sections we presented our framework from a more abstract point

of view. In this section, instead, we analyze in more detail some possible ways of

composing the framework’s building blocks.

We will study in more depth our settings from the simplest one, which is fully cen-

tralized and where faults are detected after they took place, to the most complex

one, which is fully distributed and in which faults cannot take place. We explain

the main differences between the runtime verification of a MAS and the creation

of a MAS where each agent is correct by construction.

3.2.1 Centralized runtime verification

The initial goal of our work [3, 8] was testing whether the actual events in the

MAS were compliant with the protocol specification. To define the operational
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semantics of the protocol, and to implement the monitoring activity, we used the

next transition function already defined.

Figure 3.1: Runtime verification of a MAS using a monitor agent

All checks are made by a privileged agent called monitor; this is the only one which

executes the next transition function observing all agents events (it is important

to note that the next transition function, in this case, is called on the protocol

representing a global view of the system status). From a more technical point of

view, all agents can send and receive all messages6 they want, thus the monitor

can only observe events that have already occurred.

Unfortunately, this solution raises two problems: bottlenecks and lack of distribu-

tion.

If we have only one agent which verifies that the observable part of agent behaviour

respects the pattern indicated by the protocol, we risk falling in a bottleneck

problem; indeed, in a distributed system with N agents and 1 monitor, there is a

risk of creation of a lot of traffic on the monitor caused by the high flow of events

to verify. In particular, we can also note that this solution is not reliable, because

6We must remind that a message is a communicative event which is a particular case of event.
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there is only one agent which checks all events; if the monitor dies, the entire

system keeps on running with no agent verifying the event flow.

The lack of reliability and risk of deadlocks resulting from this approach can be

addressed by adding more monitors to our system.

3.2.2 Distributed runtime verification

In order to solve the problems of lack of reliability and emergence of deadlocks,

we can add more than one monitor to the system. In this way, each monitor must

only check a subset of all agents.

Figure 3.2: Runtime verification of a MAS using two monitors agent

The main difference from the single monitor approach lies in the addition of the

projection phase. As already explained in Section 3.1.3, using the project function,

we can obtain a local view starting from a global view of a protocol; this allows

us to split the workload of 1 monitor among N monitors.
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The main problem of this setting is the choice of how to split the set of agents

into subsets, each of them checked by a different monitor7.

What if we stress even more on distribution?

3.2.3 Ultra-distributed runtime verification

In order to make our implementation as distributed as possible we can simply add

a monitor for each agent.

Figure 3.3: Runtime verification of a MAS using one monitor for each agent

Unfortunately, this solution is not efficient enough; when we have only one monitor,

it has to verify the entire system (a great deal of work) but, if we have one monitor

for each agent, it does not have many events to observe (a very small amount of

7Problem on which we do not linger because it is out of the scope of our work.
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work). In particular, there is also the risk of checking the same event multiple

times unnecessarily8.

In spite of the inefficiency of this approach, this setting allows us to note a very

important aspect; we use a monitor to check a single agent having a local view of

a global protocol representation.

What if we collapse the monitor into the agent it checks?

3.2.4 Protocol-Driven agents

The penultimate setting of our framework consists in the absence of all monitors,

bringing the protocol inside each agent by projection. In this way, each agent can

follow the protocol by itself and it is correct by construction (it is guided by the

protocol).

We call this particular kind of agents protocol-driven agents.

In protocol-driven agents, the purpose of the protocol is no longer to test the

acceptability of an event which already took place (like in the monitor setting),

but rather to generate all the events which are allowed in the current protocol

state in order to drive the agent’s behaviour. This goal can be easily achieved by

generating all the events which are solutions allowed by next, given the current

state of the protocol.

We define a generate function

generate: Pr → Pfin(Event × Pr)

which takes one protocol Pr0 and returns the set of couples of events and protocols,

{ (Event1,Pr1), (Event2,Pr2), ..., (Eventn,Prn) } such that Pri ∈ next(Pr0, Eventi)

for all i such that 1 ≤ i ≤ n.

In order to better explain the generate function, we have to decrease the level

of abstraction, as it has already happened, considering the communicative events

(messages) among the agents instead of generic events. Given an agent Ag which

8In the case with only one monitor, if an agent sends a message to another agent, the monitor
checks if the message is compliant with the protocol once; but, in the case with a monitor for
each agent, if an agent sends a message to another agent, this message is checked by both the
sender’s monitor and the receiver’s monitor, even if only one check would be enough.
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Figure 3.4: MAS where each agent is guided by a protocol and it is not
necessary to check anything at runtime

calls generate, we name InMsgs the messages returned by generate where Ag is

the receiver, and OutMsgs the messages returned by generate where Ag is the

sender. Intuitively, InMsgs are the messages that Ag expects in that protocol’s

state (it cannot decide which one among them to receive, but it can verify that

the received message is one of them), and OutMsgs are the messages that Ag can

decide to send. All the messages returned by generate are associated with the

state where the protocol would move if that event took place, in order to properly

update the protocol’s state.

Summarizing, all the settings can use the same protocol formalism. In the previous

settings the monitor was the only agent which tracked the current state of the

protocol and that checked events using the next transition function; in this solution,

instead, a projection phase initially occurs for each agent inside the system and

then all agents have a local version of the current state of protocol and they can

call the generate function by themselves.
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Advantages of the protocol-driven implementation. The protocol-driven

approach brings the following advantages:

• safety by construction;

• good level of distribution of the verification process;

• absence of bottlenecks caused by the verification process;

• reliable setting.

Regarding to the first point; if a description of the global protocol, which all the

agents in the MAS must respect, exists, the local protocol for each agent can be

automatically obtained from the global one. This allows the protocol designer to

concentrate on the global features of the MAS only, rather than implementing one

local protocol for each agent, and the whole MAS to respect the global protocol

by construction.

In the monitor setting, if a monitor dies, all the agents that it checks remain

without an agent which controls them. Instead, in the protocol-driven setting,

there are no monitors verifying the events which are compliant with the protocol;

if an agent dies, all other agents continue to follow the protocol.

Regarding the last point, to better support the possibility of no response from an

agent, we should extend the formalism introducing some concepts about timeouts.

A work [6] which analyzes in detail the use of trace expressions with an exception

handling extension exists9 and it allows us to obtain a more reliable setting.

In the following section we can describe more in depth the last framework setting

which uses self-adaptive protocol-driven agents.

3.2.5 Self-Adaptive Protocol-Driven Agents

The last setting of our framework consists in a further extension of the protocol-

driven setting introducing the self-adaptiveness. A self-adaptive system “is often

centralized and operates with the guidance of a central controller or policy, assesses

9The cited paper analyzes an extension of the formalism which implements the exception
treatment in a runtime verification context similar to the monitor context which we have already
met.
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its own behaviour in the current surroundings, and adapts itself if the monitoring

and analysis warrants it. Such a system often operates with an explicit internal

representation of itself and its global goals” [92].

Figure 3.5: MAS where each agent is guided by a protocol and it is not nec-
essary to check anything at runtime and where an agent can request a protocol

switch to another agent.

The first observation to make on this setting is the presence of a special agent

called controller; this particular agent has the power to require a protocol switch

to other agents. When an agent receives a request for a protocol switch, it follows

these steps:

1. it checks if the request of protocol switch was sent by a controller and not

by an agent without privileges;

2. it gets the global version of the protocol it must switch to;

3. it projects the global protocol in order to obtain a local version involving

only itself;

4. it follows the new projected protocol.
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Unlike in the setting analyzed in Section 3.2.1 where only one agent (the monitor)

had to verify all events observed inside the system, in this framework setting, there

are no bottleneck problems. We can justify this assertion taking into account these

two observations:

• The controller does not communicate with all the agents but only with a

subset of them; consequently, an increase in the number of agents within

the system does not imply an increase in the communications among the

controller and the other agents.

• The controller workload is lower than the monitor workload. This is due to

the low frequency of the protocol switch requests: indeed, during the agents’

life the protocol switch requests do not occur frequently but only at certain

points of the protocol.

In this setting of the framework, the agents able to adapt are “self-adaptive

protocol-driven”: they are characterized by one interaction protocol specified in

one of the formalisms previously introduced (in Chapter 4 there are more details

about the last version of our formalism) and by three mandatory components,

the knowledge base, the message queue and the environment’s representation, that

should be directly implemented in the underlying agent tool (as we will analyze

in greater detail in Section 6.1). As we make no other assumption on the agent’s

architecture, our framework is as general as possible and could be implemented in

any underlying environment or programming language where these three compo-

nents are available (namely almost all tools to program MAS, be they BDI-oriented

like Jason [22], or not BDI-oriented like JADE [18]).

Besides self-adaptive protocol-driven agents, “normal” agents entirely implemented

in the underlying tool can also be part of the self-adaptive MAS. Normal agents

give the possibility to reuse existing code and to implement behaviours that cannot

be conveniently modeled using an event protocol, for example because they must

access legacy code or perform complex computations. However, no hypotheses can

be made on their adaptability and reliability.

Being self-adaptive protocol-driven means that the agent behaves according to a

given protocol. In each time instant, the self-adaptive protocol-driven agent can

make only those internal choices which are allowed by the protocol in the current

state. In case of events which depend on external choices, the agent can only verify
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if the event that took place is compliant with the protocol and act consequently.

Events could be in principle of any kind, but in order to demonstrate the feasibility

of our approach in a neat way, in this document we limit ourselves to consider

communicative events, where sending events are the result of an internal choice,

whereas reception events are not under the agents’ control and can be neither

prevented nor forced, but only checked.

Adaptation takes place when the self-adaptive protocol-driven agent switches to

a new protocol on request of the controller agent, which might follow a MAPE-

like loop [63, 92]. In this document we make no assumptions on the controller’s

internal architecture and functioning. For our purposes, the controller is just

an agent which has the power to request protocol switches to some self-adaptive

protocol-driven agents and which may or may be not self-adaptive protocol-driven,

depending on which type of behaviour it implements and which requirements it

must meet.

Figure 3.6: Architecture of a top-down, centralized self-adaptive MAS.

The components of this setting are shown in Figure 3.6. The protocol library may

be either external, like in the figure, or hard-wired in the controller’s knowledge

base. From a logical viewpoint this makes little difference. In the first case,

when the controller identifies which protocol the agents must follow to adapt to a

new situation, it communicates the protocol’s identifier to the agents which will
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retrieve its representation from the library. In the second case, it will send the full

protocol’s representation inside the message’s content.

Protocols in the library always take a global perspective (namely, a perspective

where all the parties involved in the protocol are managed in a homogeneous way,

without taking the point of view of one of them), but may involve a subset of the

agents in the MAS: the controller may send different protocols to different subsets

of agents, even if this requires a careful design of such protocols to avoid unwanted

interferences.

Self-adaptive protocol-driven agents interact with all the agents, including the

controller and normal ones, via message passing. This requires that the controller

and normal agents are modeled in the protocol, making self adaptive protocol-

driven agents aware of them.

Being self-adaptive protocol-driven does not contrast with the main agents’ fea-

tures identified by N. R. Jennings, K. P. Sycara and M. Wooldridge in [64] and

already presented in Section 1.1:

– Situatedness is achieved by setting the agent’s policies defining how to select

a message to send among the possible ones and what to do when a message al-

lowed by the protocol is received. These policies take information coming from

the environment into account and can affect it as a side effect.

– Autonomy is preserved because protocols usually define different allowed patterns

of events, without imposing the choice of which of them following: the choice is

left to the agent, thus balancing its respect of the protocol and its autonomy.

– Responsiveness and proactiveness depend on the protocol itself. For example, a

protocol describing the events between Alice and Bob, where Alice always sends

a message a to Bob and Bob always receives it and does nothing, leaves room

neither for responsiveness in Alice behaviour, nor for proactiveness in Bob’s one.

It is up to the protocol designer to cope with these issues in a proper way.

– Sociality, namely the ability to interact, when appropriate, with other agents and

humans, is of course the main requirement for conceiving communication-intensive

agents like self-adaptive protocol-driven ones and it is the assumption under which

our proposal works.
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As already introduced previously in the chapter, for supporting a self-adaptive

protocol-driven approach to agent programming, a formalism for expressing pro-

tocols must exist together with a generate function for identifying the allowed

actions (both sending and receiving) for moving from the current state of the pro-

tocol to the next one. What differentiates the behaviour of each agent are the

select policy to select the message to send among the allowed ones, and the react

policy to react to an incoming message. Two more policies must be defined to

state how to manage unexpected messages and which cleanup actions to perform

before switching from the currently executing protocol to the new one (the policies

will be formally defined in Section 6.2.1).

Figure 3.7: Architecture of a self-adaptive protocol-driven agent.

The architecture of a self-adaptive protocol-driven agent is depicted in Figure

3.7. The interpreter implements a cycle where it first checks if there is a protocol

switch request and if it can be managed in the current state of the protocol. If

yes, and if the sender has the power to make such a request - namely, if it is a

system’s controller -, a protocol switch is performed after some cleanup operations.

If no protocol switch is foreseen by the protocol in that moment, or no protocol

switch request has been received, the normal communication actions that can be

performed are generated and, according to the precedence that the agent gives to

receiving or sending (in case both options are available), one of them is performed.

The environment representation and knowledge base are updated accordingly and

the protocol moves to the next state. In case the received message was not foreseen
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by the protocol, it is managed according to the unexpected policy. An alarm which

is reset any time an action is performed allows to avoid deadlocks, for example in

case the agent gives the precedence to receiving, but no messages are available in

the message queue. When the alarm expires the agent cannot wait any longer and

selects one of the possible messages to be sent (if any), forcing itself to adopt a

sending precedence.

In order to move from a general description of the framework to its implementation,

we need to fix some choices, in particular the protocol representation formalism

(and, as a direct consequence, the generate and project functions) and the under-

lying agent tool. Our implementation instantiates the general one in the following

way:

– All the self-adaptive protocol-driven agents use the same protocol formalism and

are able to perform generation and projection by themselves.

– There is an external protocol library.

– The formalism for expressing protocols is that of “trace expressions” (it will be

presented in Chapter 4).

– The projection algorithm is the one defined in [4]. Projection, already introduced

as building block of our framework in Section 3.1.3, can be described as a function

project : Pr×P(Agents)→ Pr where Pr is the set of protocols, that are expressed

with one of the existing formalism. Given a protocol Pr1 and a set of agents Agents

as input, project returns a protocol Pr1Agents which contains only events involving

agents in Agents: events that do not involve agents in Agents are removed from

Pr1Agents.

We can go into details of protocol specifications in the case of self-adaptive protocol-

driven agents, where it is important noting how the protocol switch is obtained.

Protocol specifications. As just mentioned in the previous section, all proto-

cols are represented using a well defined formalism. In the background (see Section

1.6) we already presented the formalism of constrained global types.

In order to define our protocols we use a different formalism which originated as

an extension of constrained global types: trace expressions10.

Protocols thus are formalized using trace expressions. States of the protocol are

10In Chapter 4 we will analyze trace expressions in more detail.
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represented by trace expressions as well, blurring the distinction between “proto-

col” and “protocol state”. For requesting a protocol switch we introduce a special

switch performative with a protocol as content. Like any other event, protocol

switches may be allowed in some points of the protocol and not in others, making

it possible for the agents to switch to a new protocol only at the right time.

A protocol is characterized by its identifier, its specification and the definition of

event types identifying events allowed in a specific state of the protocol.

The description of events admitted inside our framework were introduced in Sec-

tion 1.6. We remind that we are limiting our investigation to communicative events

focusing on a low level customization.

Events. Events have the form msg(Sender, Receiver, Perf, Content)11.

Sender and Receiver are agent identifiers, Perf is a performative in the agent

communication language supported by the underlying tool (for example, KQML

[72] in Jason and FIPA-ACL [53] in JADE), Content is the event content in some

suitable representation language. This model supports point to point communi-

cation only, although a broadcast operator could be defined on top of that.

We use the term “events” rather than “message” to stress that a protocol always

represents a global description of what is expected to go on: the notion of event

summarizes that one agent sends a message and another is expected to receive it.

From the viewpoint of one single agent Ag, an event corresponds to an incoming

message if Ag is the receiver, and corresponds to a message that Ag is expected to

send, if it is the sender.

For requesting a protocol switch, msg(Sender, Receiver, switch, Protocol)

is used: Sender, which must have the power to request a protocol switch to

Receiver, wants that Receiver starts behaving according to Protocol as soon

as possible (we will explain what “as soon as possible” means in Section 6.2.2).

Event types, as already introduced in Section 1.6, add an abstraction level between

the actual events taking place in the MAS and the protocol specification.

For example,

ask enter treasure(hobbit1) is the event type of msg(hobbit1, bilbo, ask,

enter treasure). We state that msg(hobbit1, bilbo, ask, enter treasure)

∈ ask enter treasure(hobbit1) and we use the latter in the protocol specifica-

tion.

11We remind that, without loss of generality, in this thesis we only consider communicative
events.
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If more than one hobbit, say hobbit1, hobbit2 and hobbit3, could ask Bilbo

to enter the treasure room and the protocol did not need to distinguish among

them, we could introduce an event type ask enter treasure not depending on

the hobbit, and state that the three events

• msg(hobbit1, bilbo, ask, enter treasure),

• msg(hobbit2, bilbo, ask, enter treasure) and

• msg(hobbit3, bilbo, ask, enter treasure)

have event type ask enter treasure. When the protocol is in a state where

ask enter treasure is allowed, any actual event msg(hobbiti, bilbo, ask,

enter treasure), with i ∈ {1, 2, 3}, can take place.



Chapter 4

Trace expressions

In this chapter, we present trace expressions as a constrained global types extension

(see Chapter 1) and we formally compare the expressive power of trace expressions

with the LTL, a formalism widely adopted in runtime verification. We show that

any LTL formula can be translated into a trace expression which is equivalent

from the point of view of runtime verification. Since trace expressions are able to

express and verify sets of traces that are not context-free, we can derive that in

the context of runtime verification our formalism is more expressive than LTL.

Trace expressions are a compact and expressive formalism, which can be employed

to model complex interaction protocols, and to generate monitors for the Jason

and Jade platforms, and can be generalized to support runtime verification of

different kinds of properties and systems.

4.1 Runtime verification using trace expressions

As we mentioned in Section 1.4.2, there are several specification formalisms em-

ployed by RV; some of them are well-known formalisms that have been originally

introduced for other aims, as regular expressions, context free grammars, and lin-

ear time temporal (LTL) logic, while others have been expressly devised for RV.

Trace expressions belong to this latter group; they are an evolution of constrained

global types [3, 7, 71], which have been initially proposed for RV of agent interac-

tions in multiagent systems. Trace expressions are an expressive formalism based

56
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on a set of operators (including prefixing, concatenation, shuffle, union, and inter-

section) to denote finite and infinite traces of events. Their semantics is based on a

labeled transition system defined by a simple set of rewriting rules which directly

drive the behaviour of monitors generated from trace expressions.

In this chapter we introduce in detail the trace expressions formalism and we

formally compare it with the LTL, a formalism already introduced in Section 1.5

which is widely used for RV, even though it was initially introduced for model

checking.

When used for RV, the expressive power of LTL is reduced, because at runtime only

finite traces can be checked, as already anticipated in Section 1.5.3. For instance,

the formula Fp (finally p) which states that an event satisfying the predicate p will

eventually occur after a finite trace of other occurred events, can only be partially

verified at runtime, because no monitor is able to reject an infinite trace of events

that do not satisfy p, which, of course, is not a model for Fp.

To provide a formal account for this limitation, a three-valued semantics for LTL,

called LTL3 has been proposed [17].

A third truth value “?” is introduced to specify that after a finite trace of events

has been occurred, the outcome of a monitor can be inconclusive. For instance,

if we consider the formula Fp, and the event e which does not satisfy p, then no

monitor generated from Fp is able to decide whether Fp is satisfied or not after

the trace eee.

In trace expressions this limitation of RV is naturally modeled by the standard

semantics: if the semantics of a trace expression τ contains all finite traces e, ee,

eee, . . . , then it must also contain the infinite trace e . . . e . . . because no monitor

generated from τ will be able to reject it. This corresponds to the more formal

claim stating that the semantics of any trace expression is a complete metric space

of traces, when the standard distance between traces is considered.

As a consequence, when the standard semantics is considered, one can conclude

that LTL and trace expressions are not comparable: neither is more expressive

than the other. However, since the two formalisms are considered in the context

of RV, if the more appropriate three-valued semantics is considered, then trace

expressions are strictly more expressive than the LTL: every LTL formula can be

encoded into a trace expression with an equivalent three-valued semantics, whereas
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the opposite property does not hold, since trace expressions are also able to specify

context-free and non context-free languages.

4.2 The trace expression formalism

Trace expressions introduce a novelty with respect to constrained global types: be-

sides the union (a.k.a. choice), concatenation, and shuffle (a.k.a. fork) operators,

trace expressions support intersection as well. Intersection replaces the constrained

shuffle operator [3, 5], an extension of the shuffle operator introduced for making

constrained global types more expressive. Constrained shuffle imposes synchro-

nization constraints on the events inside a shuffle, thus making constrained global

types and their semantics more complex; furthermore, constrained shuffle is not

compositional: it cannot be expressed as an operation between sets of event traces

(that is, the mathematical entities denoted by trace expressions). In contrast,

the intersection operator has a simple, intuitive, and compositional semantics (as

suggested by the name itself) and yet is very expressive; for instance, as shown in

Section 4.3, it can be used for specifying non context-free sets of event traces.

4.2.1 Events

In the following we denote by E a fixed universe of events. An event trace over E
is a possibly infinite sequence of events in E . In the rest of the thesis the meta-

variables e, w, σ and u will range over the sets E , Eω, E∗, and Eω∪E∗, respectively;

juxtaposition e u denotes the trace where e is the first event, and u is the rest of

the trace. A trace expression over E denotes a set of event traces over E .

As a possible example, we might have E = {o.m | o object identity, m method name}
where the event o.m corresponds to an invocation of method named1 m on the

target object o. This is a typical example of set of events arising when monitoring

object-oriented systems (we will show an example later on).

It is important to remember also the special event switch that we have already

seen in Section 3.2.5. Respect to all other events, it must be handled differently;

1Here, for simplicity, an event does not include the signature of the method as it should be
the case for those languages supporting static overloading.
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indeed, this event allows an agent to ask to another a protocol switch at runtime2

(in this way all the agents can have different behaviour at different times of their

life).

4.2.2 Event types

The event types have already been used previously in the thesis; they were intro-

duced in Section 1.6, in the context of the constrained global types and they were

used in Section 3.2.5 during the protocol specification. As already seen, the event

types allow our formalisms to be more general, accordingly, also trace expressions

are built on top of event types (chosen from a set ET ), rather than of single events;

an event type denotes a subset of E , and corresponds to a predicate of arity k ≥ 1,

where the first implicit argument corresponds to the event e under consideration;

referring to the example where events are method invocations, we may introduce

the type safe(o) of all safe method invocations for a given object o, defined by the

predicate safe of arity 2 s.t. safe(e, o) holds iff e = o.isEmpty .

The first argument of the predicate is left implicit in the event type, and we write

e ∈ safe(o) to mean that safe(e, o) holds. Similarly, the set of events specified by

an event type ϑ is denoted by JϑK; for instance, Jsafe(o)K = {e | e ∈ safe(o)}.

For generality, we leave unspecified the formalism used for defining event types;

however, in practice we do not expect that much expressive power is required. For

instance, for all examples presented in this work a formalism less powerful than

regular expressions is sufficient.

4.2.3 Trace expressions

Similarly to a costrained global type, whose syntax was described in Section 1.6, a

trace expression τ represents a set of possibly infinite event traces, and is defined

on top of the following operators3, in which, only the intersection operator is the

new operator introduced with the trace expressions, all the others are inherited

from the constrained global types:

2We postpone all technical details on how it is handled inside our interpreter in Chapter 6.
3Binary operators associate from left, and are listed in decreasing order of precedence, that

is, the first operator has the highest precedence.
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• λ (empty trace), denoting the singleton set {ε} containing the empty event

trace ε.

• ϑ:τ (prefix ), denoting the set of all traces whose first event e matches the

event type ϑ (e ∈ ϑ), and the remaining part is a trace of τ .

• τ1·τ2 (concatenation), denoting the set of all traces obtained by concatenating

the traces of τ1 with those of τ2.

• τ1∧τ2 (intersection), denoting the intersection of the traces of τ1 and τ2.

• τ1∨τ2 (union), denoting the union of the traces of τ1 and τ2.

• τ1|τ2 (shuffle), denoting the set obtained by shuffling the traces in τ1 with

the traces in τ2.

To support recursion without introducing an explicit construct, trace expressions

are regular (a.k.a. rational or cyclic) terms, as well as the constrained global

types: they correspond to trees where nodes are either the leaf λ, or the node

(corresponding to the prefix operator) ϑ with one child, or the nodes ·, ∧, ∨, and

| all having two children. According to the standard definition of rational trees,

their depth is allowed to be infinite, but the number of their subtrees must be

finite. As originally proposed by Courcelle [41], such regular trees can be modeled

as partial functions from {0, 1}∗ to the set of nodes (in our case {λ, ·,∧,∨, |}∪ET )

satisfying certain conditions.

A regular term can be represented by a finite set of syntactic equations, as happens,

for instance, in most modern Prolog implementations where unification supports

cyclic terms.

As an example of non recursive trace expression, let E be the set {e1, . . . , e7}, and

ϑi, i = 1, . . . , 7, be the event types such that e ∈ ϑi iff e = ei (that is, JϑiK = {ei});
then the trace expression

TE 1 = ((ϑ1:λ|ϑ2:λ)∨(ϑ3:λ|ϑ4:λ))·(ϑ5:ϑ6:λ|ϑ7:λ)

denotes the following set of event traces:{
e1e2e5e6e7, e1e2e5e7e6, e1e2e7e5e6, e2e1e5e6e7, e2e1e5e7e6, e2e1e7e5e6,

e3e4e5e6e7, e3e4e5e7e6, e3e4e7e5e6, e4e3e5e6e7, e4e3e5e7e6, e4e3e7e5e6

}
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As an example of recursive trace expression, if ϑi denotes the same event type

defined above for i = 1, . . . , 7, and JϑK = {e4, e5, e6, e7}, Jϑ′K = {e1, e2, e6, e7}, and

Jϑ′′K = {e1, e2, e3, e4}, then the trace expression

TE 2 = (E|ϑ1:ϑ2:ϑ3:λ)∧(E ′|ϑ3:ϑ4:ϑ5:λ)∧(E ′′|ϑ5:ϑ6:ϑ7:λ)

E = λ∨ϑ:E E ′ = λ∨ϑ′:E ′ E ′′ = λ∨ϑ′′:E ′′

denotes the set {e1e2e3e4e5e6e7}.

Finally, the recursive trace expressions T1 = (λ∨ϑ1:T1)·T2, T2 = (λ∨ϑ2:T2) repre-

sent the infinite but regular terms (λ∨ϑ1:(λ∨ϑ1: . . .))·(λ∨ϑ2:(λ∨ϑ2: . . .)) and

(λ∨(ϑ2:(λ∨(ϑ2: . . .)))), respectively.

In the rest of the work we will limit our investigation to contractive (a.k.a. guarded)

trace expressions (as in Section 1.6 in the case of constrained global types). Even

if already presented informally in Section 1.6, we can define here formally what is

a contractive trace expression (or in the same way a contractive constrained global

types).

Definition 4.1. A trace expression τ is contractive if all its infinite paths contain

the prefix operator.

In contractive trace expressions all recursive subexpressions must be guarded by

the prefix operator; for instance, the trace expression defined by T1 = (λ∨(ϑ:T1))

is contractive: its infinite path contains infinite occurrences of ∨, but also of the :

operator; conversely, the trace expression T2 = ϑ:T2∨T2 is not contractive.

Trivially, every trace expression corresponding to a finite tree (that is, a non cyclic

term) is contractive.

For all contractive trace expressions, any path from their root must always reach

either a λ or a : node in a finite number of steps. Since in this work all defini-

tions over trace expressions treat ϑ:τ as a base case (that is, the definition is not

propagated to the subexpression τ), restricting trace expressions to contractive

ones has the advantage that most of the definitions and proofs requires induction,

rather than coinduction, despite trace expressions can be cyclic. As a consequence,

the implementation of trace expressions becomes considerably simpler. For this

reason, in the rest of the thesis we will only consider contractive trace expressions.
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(prefix)

ϑ:τ
e→ τ

e∈ϑ (or-l)
τ1

e→ τ ′1

τ1∨τ2
e→ τ ′1

(or-r)
τ2

e→ τ ′2

τ1∨τ2
e→ τ ′2

(and)
τ1

e→ τ ′1 τ2
e→ τ ′2

τ1∧τ2
e→ τ ′1∧τ ′2

(shuffle-l)
τ1

e→ τ ′1

τ1|τ2
e→ τ ′1|τ2

(shuffle-r)
τ2

e→ τ ′2

τ1|τ2
e→ τ1|τ ′2

(cat-l)
τ1

e→ τ ′1

τ1·τ2
e→ τ ′1·τ2

(cat-r)
τ2

e→ τ ′2

τ1·τ2
e→ τ ′2

ε(τ1)

Figure 4.1: Operational semantics of trace expressions

(ε-empty)
ε(λ)

(ε-or-l)
ε(τ1)

ε(τ1∨τ2)
(ε-or-r)

ε(τ2)

ε(τ1∨τ2)
(ε-shuffle)

ε(τ1) ε(τ2)

ε(τ1|τ2)

(ε-cat)
ε(τ1) ε(τ2)

ε(τ1·τ2)
(ε-and)

ε(τ1) ε(τ2)

ε(τ1∧τ2)

Figure 4.2: Empty trace containment

As in constrained global types, which use the next transition function to move

from a protocol state to another one, also in trace expressions we have a transition

function (corresponding to the trace expressions semantics) which can be specified

by the transition relation δ ⊆ T × E × T , where T and E denote the set of trace

expressions and of events, respectively. As it is customary, we write τ1
e→ τ2 to

mean (τ1, e, τ2) ∈ δ.

next(τ0, e) = {τ1, τ2, ..., τn} ⇐⇒ ∀1≤i≤n.(τ0, e, τi) ∈ δ

The set generated from next(τ0, e) can be infinite. If the trace expression τ1

specifies the current valid state of the system, then an event e is considered valid

iff there exists a transition τ1
e→ τ2; in such a case, τ2 will specify the next valid

state of the system after event e. Otherwise, the event e is not considered to be

valid in the current state represented by τ1. Figure 4.1 defines the inductive rules

for the transition function.

While the transition relation δ with its corresponding rules in Figure 4.1 defines

the non empty traces of a trace expression, the predicate ε( ), inductively defined

by the rules in Figure 4.2, defines the trace expressions that contain the empty

trace ε. If ε(τ) holds, then the empty trace is a valid trace for τ .



Chapter 4. Trace expressions 63

Rule (prefix) states that valid traces of ϑ:τ can only start with an event e of type

ϑ (side condition e ∈ ϑ), and continue with traces in τ .

Rules (or-l) and (or-r) state that the only valid traces of τ1∨τ2 have shape e u,

where either e u is valid for τ1 (rule (or-l)), or e u is valid for τ2 (rule (or-r)).

Rule (and) states that the only valid traces of τ1∧τ2 have shape e u, where e u is

valid for both τ1 and τ2.

Rules (shuffle-l) and (shuffle-r) state that the only valid traces of τ1|τ2 have shape

e u, where either e u′1 and u2 are valid traces for τ1 and τ2, respectively, and u can

be obtained as the shuffle of u′1 with u2 (rule (shuffle-l)), or u1 and e u′2 are valid

traces for τ1 and τ2, respectively, and u can be obtained as the shuffle of u1 with

u′2 (rule (shuffle-r)).

Rules (cat-l) and (cat-r) state that the only valid traces of τ1·τ2 have shape e u,

where either e u′1 and u2 are valid traces for τ1 and τ2, respectively, and u can be

obtained as the concatenation of u′1 to u2 (rule (cat-l)), or λ is a valid trace for τ1

(side condition ε(τ1)) and e u is a valid trace for τ2 (rule (cat-r)).

For what concerns Figure 4.2, rules (ε-shuffle), (ε-cat) and (ε-and) require the

empty trace to be contained in both subexpressions τ1 and τ2, whereas for the

union operator it suffices that the empty trace is contained in either τ1 (rule (ε-or-

l)) or τ2 (rule (ε-or-r)). The prefix operator can never build sets of traces containing

the empty trace, whereas λ contains just the empty trace (rule (ε-empty)).

The set of traces JτK denoted by a trace expression τ is defined in terms of the

transition relation δ, and the predicate ε( ). Since JτK may contain infinite traces,

the definition of JτK is coinductive.

Definition 4.2. For all possibly infinite event traces u and trace expressions τ ,

u ∈ JτK is coinductively defined as follows:

• either u = ε and ε(τ) holds,

• or u = e u′, and there exists τ ′ s.t. τ
e→ τ ′ and u′ ∈ Jτ ′K hold.

In the following we will need to consider the reflexive and transitive closure of the

transition relation: if σ is a finite (possibly empty) event trace, then the relation

τ
σ→ τ ′ is inductively defined as follows: τ

σ→ τ ′ holds iff
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• σ = ε, and τ ′ = τ ;

• or σ = e σ′, and there exists τ ′′ s.t. τ
e→ τ ′′, and τ ′′

σ′→ τ ′.

Let us consider again the previous examples of trace expressions:

TE 1 = ((ϑ1:λ|ϑ2:λ)∨(ϑ3:λ|ϑ4:λ))·(ϑ5:ϑ6:λ|ϑ7:λ)

TE 2 = (E|ϑ1:ϑ2:ϑ3:λ)∧(E ′|ϑ3:ϑ4:ϑ5:λ)∧(E ′′|ϑ5:ϑ6:ϑ7:λ)

E = λ∨ϑ:E E ′ = λ∨ϑ′:E ′ E ′′ = λ∨ϑ′′:E ′′

∀ i ∈ {1..7} JϑiK = {ei} JϑK = {e4, e5, e6, e7}
Jϑ′K = {e1, e2, e6, e7} Jϑ′′K = {e1, e2, e3, e4}

We show that there exist τ1, τ2 s.t. TE 1
σ1→ τ1, with σ1 = e1e2e5e6e7, ε(τ1),

TE 2
σ2→ τ2, with σ2 = e1e2e3e4e5e6e7, and ε(τ2).

For TE 1
σ1→ τ1 we have ϑ1:λ|ϑ2:λ

e1→ λ|ϑ2:λ
e2→ λ|λ, hence (ϑ1:λ|ϑ2:λ)∨(ϑ3:λ|ϑ4:λ)

e1e2→
λ|λ, and TE 1

e1e2→ (λ|λ)·(ϑ5:ϑ6:λ|ϑ7:λ). Furthermore, ϑ5:ϑ6:λ|ϑ7:λ
e5→ ϑ6:λ|ϑ7:λ

e6→
λ|ϑ7:λ

e7→ λ|λ, hence ϑ5:ϑ6:λ|ϑ7:λ
e5e6e7→ λ|λ, and, because ε(λ|λ), we can conclude

(λ|λ)·(ϑ5:ϑ6:λ|ϑ7:λ)
e5e6e7→ λ|λ, hence, TE 1

e1e2e5e6e7→ λ|λ.

For TE 2
σ2→ τ2 we have E|ϑ1:ϑ2:ϑ3:λ

e1e2e3→ E|λ e4e5e6e7→ E|λ, and E ′|ϑ3:ϑ4:ϑ5:λ
e1e2→

E ′|ϑ3:ϑ4:ϑ5:λ
e3e4e5→ E ′|λ e6e7→ E ′|λ, and, finally, E ′′|ϑ5:ϑ6:ϑ7:λ

e1e2e3e4→
E ′′|ϑ5:ϑ6:ϑ7:λ

e5e6e7→ E ′′|λ. Therefore TE 2
e1e2e3e4e5e6e7→ (E|λ)∧(E ′|λ)∧(E ′′|λ) and

ε(E|λ), ε(E ′|λ), and ε(E ′′|λ), hence ε((E|λ)∧(E ′|λ)∧(E ′′|λ)).

Since the semantics of trace expressions is coinductive, they can specify non termi-

nating behaviour; for instance, the trace expression defined by T = ϑ1:T denotes

the set with just the infinite trace e1 e1 . . . e1 . . . containing infinite occurrences of

e1; had we considered an inductive semantics, T would have denoted the empty

set. For the very same reason, the trace expression defined by T ′ = λ∨ϑ1:T ′ de-

notes the set containing all finite traces of the event e1, but also the infinite trace

e1 e1 . . . e1 . . .. From the point of view of RV, the only difference between the two

types is that for T ′ the monitored system is allowed to halt at any time, whereas

for T the system can never stop.

Since at runtime it is not possible to check that a given monitored system will

always eventually stop, trace expressions cannot denote sets of traces which are

not complete metric spaces, with the standard distance between traces: d(u1, u2) =
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2−n, where n denotes the smallest index (starting from 0) at which the two traces

are different; by convention, if the two traces are equal, than n =∞, and 2−n = 0.

For instance, if the semantics of a trace expression τ contains traces of arbitrarily

large length of the event e1, then it also contains the infinite trace e1 e1 . . . e1 . . .;

indeed, the monitor associated with τ will not be able to reject it.

Such a limitation is independent of the used formalism, but it is intimately related

to RV; as pointed out in Section 4.4, similar issues arise when the LTL is used for

RV: its semantics has to be revisited to take into account the fact that at runtime

only finite traces can be monitored and checked.

4.2.3.1 The finite composition operator

In order to create more complex protocols, we must further modify the syntax

of trace expressions. In particular, we need a new operator which allows us to

replicate a trace expression a chosen number of times.

This new construct is called finite composition; its syntax is:

finite composition(operator, τ, variables)

where

• operator may be any binary operator (|, ∨, ∧, ·);

• τ is the trace expression which we want to replicate;

• variables is the set of variables on which we want to iterate, it has this form:

{(var(1), {}), (var(2), {}), ..., (var(n), {})}.
Each tuple has two arguments, the first represents the variable on which

we want to iterate, the second defines the set of modifiers. A modifier can

be add(var(i)) or remove(var(i)), where var(i) must be a variable which

has been already defined in a finite composition operator; for instance, if

we have (var(1), {add(var(2)), remove(var(3))}), we are saying that var(1)

must iterate on the set which is fixed during the instantiation phase, adding

also the current value of var(2) and removing the current value of var(3).
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The finite composition operator is like all the other trace expression operators.

Indeed, it is an expression which represent a trace expression and it will be applied

and instantiated only during the instantiation phase (see Section 6.3.1.6).

Considering the event type used in the example in Section 4.2.2: Jsafe(o)K =

{e | e ∈ safe(o)}, we want to write a trace expression which consists in a shuffle

operator where each branch contains this prefix operator but, with a different

argument inside the event type for each branch. For instance, like: safe(o1) : λ |
safe(o2) : λ | ... | safe(on) : λ.

The finite composition operator is different from all the other operators, indeed,

it is a special operator which, during the instantiation phase (that is a prepro-

cessing phase), transforms the trace expression where it appears in a trace expres-

sion like those described before where the finite composition operator is removed

making explicit the composition. A trace expression containing at least one fi-

nite composition operator is called template trace expression, as we will see in

more detail in Section 4.5, and it requires to be instantiated before it can be

used; indeed, for a trace expression to be used at runtime, both for runtime veri-

fication and for generating self-adaptive protocol-driven agents, it must not have

variable inside it and it must be fully instantiated (in this way we can consider

the finite composition operator as a sort of “meta-operator”).

Returning to the example, without the finite composition operator we would have

written the prefix operator n times; using instead this new construct we can write:

finite composition(|, safe(var(1)) : λ, {(var(1), {})})

which, if applied passing {o1, o2, ..., on} as the set on which var1 iterates, returns

the trace expression: safe(o1) : λ | safe(o2) : λ | ... | safe(on) : λ (exactly the

trace expression we want).

4.2.4 Deterministic trace expressions

As already anticipated informally in Section 1.6, the constrained global types can

be deterministic and nondeterministic. This also applies to trace expressions,

indeed, there are trace expressions τ for which the problem of word recognition is

less efficient because of non determinism.
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In the previous section, we have presented the syntax of trace expressions as a

constrained global types syntax evolution highlighting the main differences among

the operators; in particular, trace expressions have the same constrained global

types operators with in addition the intersection operator.

Non determinism originates from the union, shuffle, and concatenation operators,

because for each of them two possibly overlapping transition rules are defined; con-

sequently, the new intersection operator does not influence the trace expressions

determinism.

Let us consider the trace expression τ = (ϑ1:ϑ2:λ)∨(ϑ1:ϑ3:λ), where JϑiK = {ei}
for i ∈ {1..3}. Both transitions τ

e1→ ϑ2:λ and τ
e1→ ϑ3:λ are valid, but Jϑ2:λK 6=

Jϑ3:λK; therefore, to correctly accept the trace e1e3, both rules have to be applied

simultaneously, and the set of trace expressions {ϑ2:λ, ϑ3:λ} has to be considered,

as it is done for non deterministic automaton.

Similarly, for the trace expression τ ′ = (ϑ1:ϑ2:λ)|(ϑ1:ϑ3:λ), both transitions τ ′
e1→

(ϑ2:λ)|(ϑ1:ϑ3:λ) and τ ′
e1→ (ϑ1:ϑ2:λ)|(ϑ3:λ) are valid, but J(ϑ2:λ)|(ϑ1:ϑ3:λ)K 6=

J(ϑ1:ϑ2:λ)|(ϑ3:λ)K.

Finally, for the trace expression τ ′′ = (λ∨ϑ1:ϑ2:λ)·(ϑ1:λ) both transitions τ ′′
e1→

(ϑ2:λ)·(ϑ1:λ) and τ ′′
e1→ λ are valid, but J(ϑ2:λ)·(ϑ1:λ)K 6= JλK.

In the rest of this work we will focus on deterministic trace expressions: indeed,

the problem of word recognition is simpler and more efficient in the deterministic

case.

Deterministic trace expressions are defined as follows.

Definition 4.3. Let τ be a trace expression; τ is deterministic if for all finite

event traces σ, if τ
σ→ τ ′ and τ

σ→ τ ′′ are valid, then Jτ ′K = Jτ ′′K.

The trace expressions τ , τ ′, and τ ′′, as defined above, are not deterministic, while

the respectively equivalent trace expressions ϑ1:(ϑ2:λ∨ϑ3:λ),

ϑ1:(((ϑ2:λ)|(ϑ1:ϑ3:λ))∨((ϑ1:ϑ2:λ)|(ϑ3:λ))), and ϑ1:(λ∨ϑ2:ϑ1:λ) are deterministic.
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4.3 Examples of specifications with trace expres-

sions

In this section we provide some examples to show the expressive power of trace

expressions. Unless specified otherwise, for simplicity in the rest of the thesis

we will consider singleton event types, that is, event types representing a single

event; with abuse of notation, we will abbreviate events with their corresponding

singleton event types.

4.3.1 Derived operators

We first introduce some useful operators that will be used in the rest of the thesis.

Constants. The constants 1 and 0 denote the set of all possible traces over

E and the empty set, respectively. Constant 1 is equivalent to the expression

T = λ∨any :T , where any is the event type s.t. JanyK = E ; constant 0 is equivalent

to the expression none:λ, where none is the event type s.t. JnoneK = ∅.

Filter operator. The filter operator is useful for making trace expressions

more compact and readable. The expression ϑ�τ denotes the set of all traces

contained in τ , when deprived of all events that do not match ϑ. Assuming that

event types are closed by complementation, the expression above is a convenient

syntactic shortcut for T |τ , where T = λ∨ϑ:T , and ϑ is the complement event type

of ϑ, that is, JϑK = E \ JϑK.

The corresponding rules for the transition relation and the auxiliary function ε( )

can be easily derived:

(cond-t)
τ

e→ τ ′

ϑ�τ e→ ϑ�τ ′
e∈ϑ (cond-f)

ϑ�τ e→ ϑ�τ
e6∈ϑ (ε-cond)

ε(τ)

ε(ϑ�τ)
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4.3.1.1 Stack objects

We expand the example where events correspond to method invocations on objects;

besides the already introduced event type safe(o) s.t. e ∈ safe(o) iff e = o.isEmpty ,

we define the following other event types:

Jpop(o)K = {o.pop}, Jtop(o)K = {o.top}, Jpush(o)K = {o.push};

Jstack(o)K = {o.pop, o.top, o.push, o.isEmpty};

Junsafe(o)K = {o.pop, o.top, o.push}.

Our purpose is to specify through a trace expression Stack all safe traces of method

invocations on a stack object o which we assume to be initially empty. Safety

requires that methods top and pop can never be invoked on o when o represents

the empty stack.

More in details, a trace of method invocations on a given object having identity o is

correct iff any finite prefix does not contain more pop(o) event types than push(o),

and the event type top(o) can appear only if the number of pop(o) event types is

strictly less than the number of push(o) event types occurring before top(o).

The trace expression Stack is defined as follows:

Stack = Any∧unsafe(o)�Unsafe

Unsafe = λ∨(push(o):(Unsafe|(Tops · (pop(o):λ∨λ))))

Any = λ∨stack(o):Any

Tops = λ∨top(o):Tops

A correct stack trace is specified by Stack which is the intersection of

Any and unsafe(o)�Unsafe; Any specifies any possible trace of method invoca-

tions on stack objects, whereas if an event has type unsafe(o), then it has to verify

the trace expression Unsafe, which requires that a push event must precede a pos-

sible empty trace of top events, which, in turn, must precede an optional event

pop; the expression is recursively shuffled with itself, since any push event can be

safely shuffled with a top or a pop event.

The specification is deterministic.

To make an example, we can consider Stack
σ→ τ with σ = push(o) push(o)
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τ = Any∧unsafe(o)�(Unsafe|Tops·((pop(o):λ)∨λ)|Tops·((pop(o):λ)∨λ)). We may

observe that τ
e→ τ1 and τ

e→ τ2, with4

e = pop(o)

τ1 = Any∧unsafe(o)�(Unsafe|λ|Tops·((pop(o):λ)∨λ))

τ2 = Any∧unsafe(o)�(Unsafe|Tops·((pop(o):λ)∨λ)|λ)

but Jτ1K = Jτ2K.

4.3.2 Alternating Bit Protocol

A more complex example concerning interactions is the alternating bit protocol

(ABP), as defined by Deniélou and Yoshida [48], where two parties, Alice and

Bob, are involved, and four different types of events can occur: Alice sends a first

kind of message to Bob (event type msg1 ), Alice sends a second kind of message

to Bob (event type msg2 ), Bob replies to Alice with an acknowledge to the first

kind of message (event type ack1 ), Bob replies to Alice with an acknowledge to

the second kind of message (event type ack2 ). The protocol has to satisfy the

following constraints for all event occurrences:

• The n-th occurrence of the event of type msg1 must precede the n-th occur-

rence of the event of type msg2 , which, in turn, must precede the (n+ 1)-th

occurrence of the event of type msg1 .

• The n-th occurrence of the event of type msg1 must precede the n-th occur-

rence of the event of type ack1 , which, in turn, must precede the (n+ 1)-th

occurrence of the event of type msg1 .

• The n-th occurrence of the event of type msg2 must precede the n-th occur-

rence of the event of type ack2 , which, in turn, must precede the (n+ 1)-th

occurrence of the event of type msg2 .

4For efficiency reasons, our implementation exploits simplification opportunities after each
transition step, therefore in practice for this example the two transitions would lead to the same
expression.
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The protocol can be specified by the following trace expression (starting from

variable AltBit1 ):

AltBit1 = msg1 :M2 AltBit2 = msg2 : M1

M1 = msg1 :A2∨ack2 :AltBit1 M2 = msg2 :A1∨ack1 :AltBit2

A1 = ack1 :M1∨ack2 :ack1 :AltBit1 A2 = ack2 :M2∨ack1 :ack2 :AltBit2

In this case the prefix and union operators are sufficient for specifying the cor-

rect behaviour of the system, however, the corresponding trace expression is not

very readable. More importantly, if only the prefix and union operators are em-

ployed, the size of the expressions grows exponentially with the number of different

involved event types.

This problem can be avoided by the use of the intersection and filter operators.

Let msg ack(i), i ∈ {1..2}, and msg denote the event types s.t. Jmsg ack(i)K =

Jmsg iK ∪ Jack iK, i ∈ {1..2}, and JmsgK = Jmsg1 K ∪ Jmsg2 K. Then the ABP can be

specified by the following deterministic trace expression:

AltBit = (msg�MM )∧(msg ack(1)�MA1)∧(msg ack(2)�MA2)

MM = msg1 :msg2 :MM

MA1 = msg1 :ack1 :MA1

MA2 = msg2 :ack2 :MA2

The three trace expressions defined by MM , MA1, and MA2 correspond to the

three constraints informally stated above. The main trace expression AltBit can

be easily read as follows: if an event has type msg1 or msg2 , then it must verify

MM , and if an event has type msg1 or ack1 , then it must verify MA1, and if an

event has type msg2 or ack2 , then it must verify MA2.

The trace expression can be easily generalized to k different kinds of messages

(with k ≥ 2), with the size of the expression growing linearly with the number of

different involved event types. For instance, for k = 3 we have the following trace
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expression:

AltBit = (msg�MM )∧(msg ack(1)�MA1)∧
(msg ack(2)�MA2)∧(msg ack(3)�MA3)

MM = msg1 :msg2 :msg3 :MM MA1 = msg1 :ack1 :MA1

MA2 = msg2 :ack2 :MA2 MA3 = msg3 :ack3 :MA2

4.3.3 Non context free languages

Trace expressions allow the specification of non context free languages; let us

consider for instance the typical example of non context free language {anbncn |
n ≥ 0}. This language can be specified by the following trace expression (defined

by T )

T = (a or b�AB)∧(b or c�BC )

AB = λ∨(a:(AB ·(b:λ)))

BC = λ∨(b:(BC ·(c:λ)))

where JaK = {a}, JbK = {b}, JcK = {c}, Ja or bK = {a, b}, and Jb or cK = {b, c}.

Assuming the universe of events E = {a, b, c}, the expression a or b�AB denotes

all traces of events over E that, when restricted to finite length5 and to events a

or b, correspond to the sequence anbn for some n ∈ N; similarly, the expression

b or c�BC denotes all traces of events over E that, when restricted to finite length

and to events b or c, correspond to the sequence bncn for some n ∈ N. Therefore

the finite traces of expression T , which is the intersection of a or b�AB and

b or c�BC , are the non-context free language {anbncn | n ≥ 0}.

Although T is deterministic, it has the drawback that non correct traces can be

detected with a certain latency. For instance the transition T
aabc→ T ′ holds, with

T ′ = (a or b�(b:λ))∧(b or c�λ), and clearly aabc is not a valid prefix for the

language; however, JT ′K = ∅, and T ′ is not able to accept any further event, that

is, recognition fails, independently from the next event.

To avoid this problem, the following equivalent (assuming that E = {a, b, c})
deterministic trace expression can be employed:

5Recall that for a comparison with context-free languages we need to disregard infinite traces;
for instance, a or b�AB and b or c�BC contain also the infinite traces aω and bω, respectively.
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T2 = (AB ·C)∧(b or c�BC ) AB = λ∨(a:(AB ·(b:λ)))

BC = λ∨(b:(BC ·(c:λ))) C = λ∨c:C

In this case, AB ·C forces events of type c to occur only after all required events

of type b have been already occurred. In this case there is no T ′′2 s.t. T2
aabc→ T ′′2

holds; indeed, T2
aab→ T ′2 with

T ′2 = ((b:λ)·(λ∨(c:C)))∧(b or c�(BC ·(c:λ))),

and there exists no T ′′2 s.t. T ′2
c→ T ′′2 , since the only possible transition from T ′2 is

T ′2
b→ T ′′2 , with

T ′′2 = (λ∨(c:C))∧(b or c�((λ∨(b:BC ·(c:λ)))·((c:λ)·(c:λ)))),

and JT ′′2 K = {cc}.

4.4 Comparison with the LTL

In this section we formally prove that trace expressions are more expressive than

the LTL, when both formalisms are used for RV. To this purpose we consider the

LTL3 semantics [17], an adaptation of the standard semantics of LTL formulas

expressly introduced to take into account the limitations of RV due to its inability

to check infinite traces. Despite there are LTL formulas which do not have an

equivalent trace expression according to the standard LTL semantics, when LTL3

is considered such a difference is no longer exhibited: for any LTL formula ϕ it is

possible to build a contractive and deterministic trace expression τ such that the

monitors generated by ϕ and τ , respectively, are behaviorally equivalent.

4.4.1 Comparing trace expressions and LTL

We have shown in Section 1.5 that LTL formulas as pUq cannot be fully verified at

runtime, therefore a three-valued semantics LTL3 has been introduced. To be able

to compare LTL formulas with trace expressions, the same three-valued semantics

is considered for trace expressions as well.
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Given a finite trace σ ∈ Σ∗ of length |σ| = n, a continuation of σ is an finite or

infinite trace u ∈ Σ∗ ∪ Σω s.t. for all 0 ≤ i < n u(i) = σ(i).

The three-valued semantics of a trace expression τ is defined as follows:

σ ∈ JτK3 =


> iff u ∈ JτK for all continuations u of σ

⊥ iff u 6∈ JτK for all continuations u of σ

? iff neither of the two conditions above holds

Let us consider again the formula ϕ = pUq; if we assume that each atomic pred-

icate in AP has a corresponding event type denoted in the same way, then the

closest trace expression τ into which ϕ can be translated is defined by T = p:T∨q:1,

where 1 is the derivable constant introduced in Section 4.3 denoting all possible

traces. If we consider the standard semantics we have that, since {p} is an event

that satisfies p, {p}ω ∈ JτK, but {p}ω 2 ϕ. However, when considering the three-

valued semantics we have that for all v ∈ {>,⊥, ?} and σ ∈ Σ∗, σ � ϕ = v iff

σ ∈ JτK3 = v. In particular, for all n ≥ 0, {p}n � ϕ =? and {p}n ∈ JτK3 =?.

To translate an LTL formula ϕ into a trace expression τ s.t. the three-valued

semantics is preserved, we exploit the result presented in Section 1. First, ϕ is

translated into an equivalent FSM Mϕ, then Mϕ is translated into an equivalent

contractive and deterministic trace expression τϕ. The latter translation is defined

as follows:

• if the initial state returns >, then ϕ is a tautology, and the corresponding

trace expression is the constant 1;

• if the initial state returns ⊥, then ϕ is a unsatisfiable, and the corresponding

trace expression is the constant 0;

• if the initial state returns ?, then the corresponding trace expression is de-

fined by a finite set of equations X1 = τ1, . . . , Xn = τn, where n is the

number of states inMϕ that return ?, each of such states is associated with

a distinct variable Xi, X1 is the variable associated with the initial state

which corresponds to the whole trace expression τϕ.

The expressions τi are defined as follows: let k be the number of states

q1, . . . , qk that do not return ⊥ for which there exists an incoming edge,

labeled with the element ai ∈ 2AP , from the node associated with Xi; we
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know that k > 0, because the node associated with Xi returns ?. Then

τi = a1:f(q1)∨ . . .∨ak:f(qk), where f(q) is defined as follows: if q returns

>, then f(q) = 1, otherwise (that is, q returns ?), f(q) = Xq (that is, the

variable uniquely associated with q is returned).

Since all variables in the expressions τ1, . . . , τn are guarded by the prefix operator,

τϕ is contractive; furthermore, it is deterministic because Mϕ is deterministic.

Theorem 4.4. Let Mϕ be the FSM equivalent to ϕ generated by the procedure

described in Section 1. Then, the trace expression τϕ generated from Mϕ as spec-

ified in Section 4.4.1 preserves the semantics of Mϕ: for all σ ∈ Σ∗ Mϕ accepts

σ with output v ∈ {>,⊥, ?} iff σ ∈ JτϕK3 = v.

Proof: The proof proceeds by induction on the length of σ.

Base case: σ = ε.

The cases where the initial state of the FSM returns > or ⊥ are immediate to be

proved (in the case of ⊥ the monitoring ends). The proof when the initial state

returns ? is based on the fact that by construction JτϕK 6= ∅ and there always

exists a trace u s.t. u 6∈ JτϕK, therefore ε ∈ JτϕK3 =?. �

Inductive step: σ = σ′e.

Inductive hypothesis: Mϕ accepts σ′ with output v ∈ {>,⊥, ?} and σ′ ∈ JτϕK3 = v.

Without loss of generality, we consider that the monitoring ends immediately

when an unexpected event occurs; that is when the FSM visits a ⊥ node and

the trace expression can not move to another state consuming the occurred event.

Consequently, Mϕ accepts σ′ with output v ∈ {>, ?} and σ′ ∈ JτϕK3 = v.

Analyzing all the possible cases:

• if v = >, for the inductive hypothesis, the current state in FSM returns >
and the corresponding trace expression is the constant 1 (by construction);

consuming the event e both remain in a state which accepts all incoming

events.

• if v =?, for the inductive hypothesis, the current state in the FSM returns

? and the corresponding trace expression is an equation of the form X = τ

(by construction), which is built as described above (in the previous page).

Consequently,
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– if the event e brings the FSM in the state >, the trace expression moves

in the constant 1 by construction. Both return >;

– if the event e brings the FSM in the state ⊥, the trace expression can

not move to another state by construction and the monitoring ends

returning ⊥. Both return ⊥;

– if the event e brings the FSM in a state ?, the trace expression moves

in a new state represented by an equation of the form X = τ which is

built as described above. Both return ?.

In Section 4.3.3 we have shown a trace expression τ that specifies a non context

free language of traces (when only finite traces are considered). More formally,

σ ∈ Jτ ·1K3 = > iff σ ∈ {anbncn | n ≥ 0}.

This means that for RV (that is, when the three-values semantics is considered)

trace expressions are strictly more expressive than LTL, since the LTL is less

expressive than ω-regular languages.

4.5 Template trace expressions

As already anticipated in Section 4.2.3.1, to be able to write more complex pro-

tocols, we can extend our formalism introducing template trace expressions. The

main novelty of template trace expressions w.r.t. trace expressions is the presence

of parameters inside the protocol definition.

In Section 4.2.3.1 we have presented the finite composition operator as a “meta-

operator”, consequently, also the template trace expressions are a sort of “meta-

formalism”, in the sense they cannot be directly used as they are. Indeed, they

are templates which must be applied to some arguments in order to obtain plain

trace expressions. Parameters are present only in the template definition: when

template trace expressions are actually used either for runtime verification or for

protocol driven behaviour generation, all terms must be ground, i.e. variables

must have already been instantiated.

In order to better explain this new trace expressions formalism extension, we

introduce it with an example.
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Here is how we would have represented a client-server protocol with trace expres-

sions.

SERVER =

receive_request(client1):

(serve_request(client1):

SERVER).

An example of a correct trace would be:

receive_request(client1):

(serve_request(client1):

(receive_request(client1):...))

where ... indicates that the trace is infinite.

The SERVER protocol is a client-server protocol made up by a loop in which the

server receives a serve request from the client1 replying with a receive request.

If we would like to change the client we should modify the protocol. This is not

very convenient because our protocols support switch interactions and we could

take advantage of this feature in order to change, for instance, the clients that

communicate with the server.

Using instead template trace expressions we can avoid this problem, defining the

protocol as follows:

SERVER =

receive_request(var(1)):

(serve_request(var(1)):

SERVER).

In this way we have written a generic protocol where we can change the involved

agents simply changing the domain of parameter var(1).

The domain of var(1) is set during the application stage. In fact, a template trace

expression must be “applied” in order to turn into a “normal” trace expression,

which can be used as described in Chapter 3. In particular, after the application
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stage, the obtained global protocol must be projected. The projection is still

a trace expression, where events not involving the agents in the given set are

removed.

Let us consider a more complex example:

SERVER1 =

receive_request(client1):

(serve_request(client1):

SERVER1),

SERVER2 =

receive_request(client2):

(serve_request(client2):

SERVER2),

SERVER3 =

receive_request(client3):

(serve_request(client3):

SERVER3),

SERVER = SERVER1|(SERVER2|SERVER3)

In this example, we have three protocol branches, each of which is similar to the

simple protocol described before, combined using the shuffle operator. The first

branch involves client1, the second client2, the third client3. As we can see

we have to write the same piece of code many times and above all it is impossible

to change agents at runtime, for example during a protocol switch.

Instead, using template trace expressions, we may write:

SERVERT =

receive_request(var(1)):

(serve_request(var(1)):

SERVERT),

SERVER = finite_composition(|, SERVERT, [m(var(1), [])])

The construct finite composition, as already defined in Section 4.2.3.1, is used

to compose many times a trace expression with a chosen operator, in this case

the shuffle operator. If we iterate the var(1) parameter on the set containing
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{client1, client2, client3} we get the same results as before, without var(1).

The great advantage of this approach, is that the set over which var(1) ranges

can be decided at runtime, hence allowing the agents to implement a (limited)

form of dynamic protocol generation.

An important aspect, which has been already analyzed in Section 4.2.3.1, is the

presence of a list of modifiers in the finite composition operator. A modifier

allows changing a parameter iteration range.

Since the wide use of template trace expressions following in the work, it is im-

portant to make an example showing the mechanism of modifiers.

Supposing that we have some trace expressions which iterate on var(1), var(2),

var(3), var(4) and var(5). An example of a list of modifiers, which might

appears in a nested finite composition operator, could be:

[

m(var(3), [remove(var(1))]),

m(var(4), [add(var(1))]),

m(var(5), [add(var(1)), remove(var(2))])

]

where

• var(3) iterates on all its previously set values except the current value of

var(1);

• var(4) iterates on all its previously set values plus the current value of

var(1);

• var(5) iterates on all its previously set values except the current value of

var(1) and plus the current value of var(2).

To understand how the modifiers are used we can see this simple example:

Alice =

hello_world(alice, var(2)):lambda,

SayHello =

finite_composition(|, Alice, [m(var(2), [remove(var(1))])]),
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HelloWorld =

finite_composition(\/, SayHello, [m(var(1), [])]).

In this case, we create a protocol where the main trace expression consists of

a union operator; each its branch is a shuffle where each branch contains

hello world(alice, var(2)) with var(2) which can take all values previously

set for it except (we have used the remove keyword) for the current value of

var(1). In this way, we can have parameters which iterate on a set of values

except (remove keyword) or plus (add keyword) a fixed parameter.

In order to better explain the application and projecting phases, we can see (with

a short piece of code6) some sample calls:

SERVERT =

(receive_request(var(1))):

(serve_request(var(1)):

SERVERT),

SERVER = finite_composition(|, SERVERT, [m(var(1), [])]),

apply(SERVER,

[t(var(1), [client1, client2, client3])],

INSTANTIATEDSERVER),

project(INSTANTIATEDSERVER, [agent1], PROJECTEDSERVER).

The apply predicate instantiates the SERVER protocol returning its instantiation in

INSTANTIATEDSERVER variable. Afterwards, the obtained “normal” trace expres-

sion without parameters can be projected; in our example, the projection is on an

agent called agent1.

After the application and projection phases we obtain a “customized” protocol

driven agent. This agent will have to only choose what to do during its execution

on the basis of what is expected by the protocol; the respect of the global protocol

is guaranteed because each agent directly derives from it via projection, and each

agent is guided by the same interpreter.

6The project function was previously described in Section 3.1.3 and its implementation will
be discussed in Chapter 6. The apply function, instead, is the function necessary for the protocol
instantiation and we will analyze it better in Chapter 6.
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Examples

In the following sections we present some examples that have been developed in

order to show the potential of our approach.

5.1 Iterated Contract Net Protocol

The protocol in this example has been developed in order to guide protocol-driven

agents and also to make runtime verification. In particular, it does not take

advantages from the protocol switches, indeed, it is defined using only one trace

expression. This trace expression, as just said, could be used both to generate

agents which directly follows the protocol and also to create monitors which can

check at runtime the protocol.

The FIPA Iterated Contract Net Interaction Protocol (ICNP) [52] is an extension

of the basic FIPA Contract Net IP, but it differs by allowing multi-round iterative

bidding.

As with the FIPA Contract Net IP, the initiator issues m initial call for proposals

with the cfp act. Of the n participants that respond, k are propose messages from

participants that are willing and able to do the task under the proposed conditions

and the remaining j are from participants that refuse.

Of the k proposals, the initiator may decide if this is the final iteration and it

can accept p of the bids (0 ≤ p ≤ k), and consequently it rejects all the others.

81
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Figure 5.1: FIPA Iterated Contract Net Protocol from the FIPA Iterated Con-
tract Net Interaction Protocol Specification (http://www.fipa.org/specs/

fipa00030/).

Alternatively the initiator may decide to iterate the process by issuing a revised

cfp to l of the participants and rejecting the remaining k-l participants.

The intent is that the initiator seeks to get better bids from the participants by

modifying the call and requesting new (equivalently, revised) bids. The process

terminates when the initiator refuses all proposals and does not issue a new cfp,

the initiator accepts one or more bids or all the participants refuse to bid.

Below we represent the ICNP protocol using trace expressions formalism.

This is the first example which uses the template extension formalism.

http://www.fipa.org/specs/fipa00030/
http://www.fipa.org/specs/fipa00030/
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Thanks to the finite composition operator, we can write the trace expression Agent

once for all agents1.

Agent =

(cfp(var(2), var(1))):

(((refuse(var(1), var(2))):lambda) \/

((propose(var(1), var(2))):

(((counter_propose(var(2), var(1))):Agent) \/

(((reject_proposal(var(2), var(1))):lambda) \/

((accept_proposal(var(2), var(1))):

(((inform(var(1), var(2))):lambda) \/

((failure(var(1), var(2))):lambda))))))),

The notations:

• lambda, instead of λ;

• \/, instead of ∨;

• /\, instead of ∧;

• finite composition(|, T, [m(var(1), []), ...,m(var(n), [])]), in-

stead of finite composition(|, T, {(var(1), {}), ..., (var(n), {})}).

are a low level customization, this is the way we represent operators in Prolog (we

will see better in detail in Section 6).

It is a short and compact protocol to represent using trace expressions formalism,

indeed, the only operators we have to use are: prefix, shuffle and union. In this

particular example, switch messages are not required and the protocol is char-

acterized by only one trace expression (which consists in a finite composition

operator).

ICNP = finite_composition(|, Agent, [m(var(1), [])]).

In the next example, instead, we analyze a protocol where the protocol switch is

necessary, as in the hobbit example (where, however, the template trace extension

is used).

1In this case we have to initialize the var(1) parameter with a list containing all the agents
inside the system.
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5.2 Auction protocol

The protocol in this example has been developed in order to guide protocol-driven

agents and also to make runtime verification. In particular, it does not take

advantages from the protocol switches, indeed, it is defined using only one trace

expression. This trace expression, as just said, could be used both to generate

agents which directly follows the protocol and also to create monitors which can

check at runtime the protocol.

In the FIPA English Auction Interaction Protocol [51], the auctioneer seeks to

find the market price of a good by initially proposing a price below that of the

supposed market value and then gradually raising the price. Each time the price

is announced, the auctioneer waits to see if any buyers will signal their willingness

to pay the proposed price. As soon as one buyer indicates that it will accept the

price, the auctioneer issues a new call for bids with an incremented price. The

auction continues until no buyers are prepared to pay the proposed price, at which

point the auction ends. If the last price that was accepted by a buyer exceeds the

auctioneer’s (privately known) reservation price, the good is sold to that buyer for

the agreed price. If the last accepted price is less than the reservation price, the

good is not sold.

The auctioneer’s calls, expressed as the general cfp act, are multi-cast to all partic-

ipants in the auction. For simplicity, only one instance of the message is portrayed.

Note also that in a physical auction, the presence of the auction participants in one

room effectively means that each acceptance of a bid is simultaneously broadcast

to all participants and not just the auctioneer. This may not be true in an agent

marketplace, in which case it is possible for more than one agent to attempt to bid

for the suggested price. Even though the auction will continue for as long as there

is at least one bidder, the agents will need to know whether their bid (represented

by the propose act) has been accepted. Hence the appearance in the IP of the

accept-proposal and reject-proposal acts, despite this being implicit in the English

Auction process that is being modeled.

Below we give two different protocol representations of FIPA English auction pro-

toco in order to better explain the advantages in the use of the intersection op-

erator. These two examples have been proposed by Luca Franceschini, a master

student at University of Genoa, which, under my supervision, has implemented
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Figure 5.2: FIPA English Auction Protocol from FIPA English Auction In-
teraction Protocol Specification (http://www.fipa.org/specs/fipa00031/).

the FIPA English auction protocol as individual exercise of the Intelligent Systems

and Machine Learning (ISML) course.

5.2.1 Solution without the intersection operator

In this case, the main trace expression is Auction.

The initiator sends the inform start message to each participant. After that, it

sends the first call for proposal cfp 1.

Auction = InformStart * Cfp1AndReply,

InformStart = finite_composition(|,

inform_start(var(1)):lambda, [m(var(1), [])]),

Cfp1AndReply = finite_composition(|,

cfp_1(var(1)):CfpReply, [m(var(1), [])]) *

http://www.fipa.org/specs/fipa00031/
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AfterAllRepliesFirstTime,

A participant can answer with a not understood message, or it can answer with

a propose message waiting for a response from the initiator.

CfpReply = (propose(var(1)):lambda) \/

(not_understood(var(1)):lambda),

The initiator may choose to accept a participant and to reject all the others, or it

can reject all participants, thus ending the protocol without a winner.

AfterAllRepliesFirstTime = PriceRaise \/

(AllRejected * EndWithoutWinner),

PriceRaise = finite_composition(\/,

PriceRaiseA, [m(var(1), [])]),

AllRejected = finite_composition(|,

reject(var(1)):lambda, [m(var(1), [])]),

EndWithoutWinner = Inform2,

Inform2 = finite_composition(|,

inform_2(var(1)):lambda, [m(var(1), [])]),

If the initiator accepts a participant, it must reject all participants except the

winner (this is obtained using the remove modifier). After that, the initiator can

restart the protocol sending a second call for proposal cfp 2 to all participants,

or it stops the protocol sending an inform 2 message to all participants and after

that it sends a request message to only the winner.

PriceRaiseA = (accept(var(1)):

(finite_composition(|,

OneRejectedA, [m(var(2),[remove(var(1))])]))

* (Cfp2AndReply \/ EndWithWinner),

Cfp2AndReply = finite_composition(|,

(cfp_2(var(1)):CfpReply), [m(var(1), [])]) *

AfterAllRepliesFirstTime,

OneRejectedA = reject(var(2)):lambda,

EndWithWinner = Inform2 * (Request \/ lambda),

Request = request(var(1)):lambda,
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In this case, it is important to note the abuse of the finite composition operator.

This is due to the absence of synchronization which is not explicitly represented

inside the protocol (this synchronization between all agents inside the system is

necessary in the auction protocol).

In particular, if we consider the protocol focusing only on its trace expression

representation, there should not be any problem, but we must remember that, at

a certain point of the execution2 (implementation side), we will have to instantiate

the protocol and all parameters will disappear3.

In our case, the trace expression used to formalize the FIPA English auction proto-

col could become very huge, this is due to the presence of a lot of finite composition

operators.

In order to solve this memory problem, we can take advantages from the use of

the intersection operator (as already said in Section 4.2 the only new operator

introduced in trace expressions w.r.t. constrained global types). The following

trace expression corresponds to a different implementation of the auction protocol,

where, instead of using a lot of finite composition operators, we can collapse

the trace expressions and synchronized them thanks to the intersection operator.

5.2.2 Solution with the intersection operator

In this case, the main trace expression is still Auction; it consists in a intersection

operator where the left operand represents an abstract view of the auction protocol,

while the right operand represents a low level view customized for each single

participant. Also here, the finite composition operator will be necessary to

write the trace expression of the right side once for all participants.

Auction = (AuctionSynchronization /\

finite_composition(|,

AuctionSingleParticipantA, [m(var(1), [])])).

AuctionSynchronization = InformStart *

(Cfp1AndReply *

2We have already given some hints in Section 4.2.3.1 and in Section 4.5 but we will clarify
the mechanism in Section 6.

3It is important to understand that a protocol must be ground and without parameters in
order to be used by a protocol-driven agent.
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(AfterPropose \/ lambda)),

Also here the protocol starts with the inform start and the cfp 1 messages.

The dotted line is used to highlight the division between the two sides of the

intersection operator; in this way, we can observe, step by step, the protocol from

both points of view.

InformStart = ((inform_start:InformStart) \/ lambda),

Cfp1AndReply = (cfp_1:(CfpReply | (Cfp1AndReply \/ lambda))),

-------------------------------------------------------------------

AuctionSingleParticipantA = (inform_start(var(1))):

(cfp_1(var(1)): CfpReplyLosingA),

The trace expression CfpReply is in shuffle with the trace expression Cfp1AndReply,

in this way, in the left side, the protocol allows an arbitrary number of cfp 1 mes-

sages, but this number is limited to the number of participants due to the right

side which has a shuffle operator with as many branches as the participants.

The participant can answer with a not understood message thus abandoning the

protocol or it can answer with a proposal.

CfpReply = ((propose:lambda) \/ (not_understood:lambda)),

-------------------------------------------------------------------

CfpReplyLosingA = ProposeLosingA \/

(not_understood(var(1)):lambda),

ProposeLosingA = (propose(var(1)):(AcceptA \/ RejectLosingA)),

The initiator can

• accept a participant rejecting all the others; after that, it restarts the protocol

knowing that there is a participant accepted (CfpReplyWinningA) or it stops

the protocol with the chosen winner (EndWinningA);

• reject all participants; after that, it ends either the protocol without a winner

(EndLosingA) or it restarts the protocol knowing that there was not yet a

participant accepted (CfpReplyLosingA).
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AfterPropose = (AcceptReject *

((cfp_2:(Cfp2AndReply *

(AfterPropose \/ lambda))) \/ End)),

Cfp2AndReply = (CfpReply | ((cfp_2:Cfp2AndReply) \/ lambda)),

AcceptReject = ((accept:Reject) \/

((reject:AcceptReject) \/ lambda)),

Reject = ((reject:Reject) \/ lambda),

End = (Inform2 | ((request:lambda) \/ lambda)),

Inform2 = ((inform_2:Inform2) \/ lambda),

-------------------------------------------------------------------

AcceptA =

(accept(var(1)):

((cfp_2(var(1)):CfpReplyWinningA) \/ EndWinningA)),

EndWinningA = (inform_2(var(1)):

((request(var(1)):lambda) \/ lambda)),

RejectLosingA = (reject(var(1)):

(EndLosingA \/ (cfp_2(var(1)):CfpReplyLosingA))),

EndLosingA = (inform_2(var(1)):lambda),

CfpReplyWinningA = (ProposeWinningA \/

(not_understood(var(1)):lambda)),

ProposeWinningA = (propose(var(1)):(AcceptA \/ RejectWinningA)),

RejectWinningA = (reject(var(1)):

(EndWinningA \/ cfp_2(var(1)):CfpReplyLosingA)),

The left side consists in the abstract representation of the protocol, while the right

side represents a more low level view of the protocol; it is easy to note the different

levels of abstraction because, in AuctionSynchronization all event types have no

arguments, instead, in

AuctionSingleParticipantA all event types have arguments.

In order to better explain the latter concept, we can consider an example which is

extracted from the protocol just described:

• inform start is a general event type where all events (or in this particular

case, all messages), that belong to it, are of the form msg(initiator, Partici-

pant, inform start), where Participant can be any possible participant agent.
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• inform start(participant1) is a low level event type, indeed, the only

event belonging to it is msg(initiator, participant1, inform start).

In this way, we synchronize the left side with the right side. The left side is

necessary and it is used to synchronize the communication between all agents,

instead, the right side is used to bound the communications to only the events

under the protocol.

This last example is the first which exploits the potential of trace expressions.

The two versions of the protocol allow us to understand that, even if the trace

expressions formalism is quite simple, without paying attention we risk to cause a

state explosion (memory problem).

5.3 Hobbit protocol

The protocol in this example has been developed in order to guide self-adaptive

protocol-driven agents. In particular, it takes advantages from the protocol switches,

indeed, it is defined using more than one trace expression. These trace expres-

sions, as just said, could be used only to generate agents which directly follows

the protocol (it would not make sense as a protocol to monitor).

We implemented an example where agents are freely inspired by characters from

the Lord of the Rings. The purpose of this toy example is to explain how our

approach works in practice, in a simplified and fictitious scenario.

The notation used for specifying protocols is the one introduced in Chapter 4. We

describe the normal protocol bh involving Bilbo and the hobbit, whereas, being

very similar, we do not specify Frodo’s, Folco’s and Sam’s normal behaviour that

we assume to be governed by fr, fo, sa protocols. The exceptional protocol ef

involves Bilbo, Frodo, Folco and Sam. Gandalf acts as the controller of the MAS

and may require a protocol switch from the normal protocol to the exceptional

one.

Protocol involving Bilbo and the hobbit. To enter the treasure room, any

hobbit must ask Bilbo and must respect his decision to either let him in or not. In

the first case the hobbit thanks Bilbo and visits the room; in the second case he

expresses his disappointment and may either start the protocol again, or give up.
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Bilbo allows in only one hobbit per day so the only knowledge he needs to check

and update is related to whether one hobbit already entered the room today or

not. Of course Bilbo can adopt other policies for deciding when and why allowing

the hobbit in. We made experiments with different ones.

The branch of the protocol specifying the interactions between Bilbo and Hobbit1

is modeled by the following trace expression.

Hobbit1Branch =

ask_enter_treasure(hobbit1):

((ok_enter(hobbit1):thanks(hobbit1):lambda) \/

(no_enter(hobbit1):grunt(hobbit1):

(lambda \/ hobbit1Branch)))

The branches for all the other hobbit are the same as Hobbit1Branch apart from

the presence of hobbit2, hobbit3, ..., instead of hobbit1.

The ask enter treasure(H) event type holds for communicative events msg(H,

bilbo, ask, enter treasure) where H is the sender, who must be one among

the hobbit, bilbo is the receiver, ask is the performative, enter treasure is the

content.

This request may be followed (sequence operator :) either by an event of type

ok enter(H) stating that H can enter the room, followed by a thanks by H, and

then conclude (lambda), or (union operator \/) by Bilbo’s refusal to let H in

(no enter(H)) followed by an expression of disappointment by H (grunt(H)), fol-

lowed by either the hobbit branch protocol again, or lambda.

The BilboHobbit trace expression has as many different branches as the hobbit

with whom Bilbo is expected to interact. The shuffle operator | is used to specify

interleaving among events in these branches, which are also put in interleaving with

(switch(bilbo,ef):lambda) where msg(gandalf,R,switch,Pr) ∈ switch(R,

Pr). This means that msg(gandalf,bilbo,switch,ef) is allowed to be received

in any moment:

BilboHobbit =

(((Hobbit1Branch|Hobbit2Branch)|

Hobbit3Branch)|...)|(switch(bilbo,ef):lambda).
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Once projected onto Bilbo, BilboHobbit returns BilboHobbits itself as Bilbo is

involved in any event and none can be discarded. When projected onto hobbitj,

BilboHobbits returns HobbitjBranch which drives the behaviour of the j-th

hobbit.

Exceptional Protocol. If an emergency takes place, Bilbo should ask Frodo to

help him moving the treasure to a safer place. If Frodo can help Bilbo, he gives a

positive answer, otherwise he asks Sam and Folco (no matter in which order). Only

after these events take place (concatenation operator *), all the agents are ready

to manage a new switch request from Gandalf, asking them to recover to their

normal protocol. The ExceptionalFlow protocol, identified by ef, is specified by

the following trace expressions:

ExceptionalFlow =

(ask_help(bilbo,frodo):

((ok_help(frodo,bilbo):lambda) \/

(cannot_help(frodo,bilbo):

(ask_help(frodo,sam):lambda |

ask_help(frodo,folco):lambda)))) * Recover,

Recover =

((switch(frodo,fr):lambda) |

(switch(bilbo,bh):lambda) |

(switch(sam,sa):lambda) |

(switch(folco,fo):lambda)).

Gandalf acts as the controller. The protocol that drives his behaviour is

Gandalf =

((switch(frodo,ef):lambda) |

(switch(bilbo,ef):lambda) |

(switch(sam,ef):lambda) |

(switch(folco,ef):lambda)) * Recover.

where Recover is defined as in the ExceptionalFlow protocol. The decision of

sending messages to Frodo, Bilbo, Sam and Folco is fired by the (paranormal)

perception of a crowd of ogres coming near to the treasure room. After that

(concatenation operator *) Gandalf sends a message to all the agents to switch
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back to their normal behaviour. The constraint that when one protocol switch

message is associated with the SwitchMsg variable, no other switch request can

enter the message queue, is respected. In fact Frodo, Bilbo, Sam and Folco are able

to manage switch requests at any time: as soon as they receive the first request

by Gandalf they manage it and set SwitchMsg to null. When Gandalf sends the

second request, they keep it in SwitchMsg until they complete the management of

the exceptional situation and become ready to switch back to their normal life.

5.4 Secret protocol

The protocol in this example has been developed in order to guide self-adaptive

protocol-driven agents. In particular, it takes advantages from the protocol switches,

indeed, it is defined using more than one trace expression. These trace expres-

sions, as just said, could be used only to generate agents which directly follows

the protocol.

In this section we analyze a protocol which is interesting from point of view of the

safety. We can summarize the main phases of the protocol in:

1. When the protocol starts, there are only agents which have a normal be-

haviour; each agent can send (receive) messages to (from) each other agent.

The only special agent is the boss agent that is a privileged agent ables to

request a protocol switch to two agents promoting them to be secret agents.

2. The boss agent promotes the two chosen agents.

3. Afterwards, there are both normal and secret agents. A secret agent can

communicate only with another secret agent; if a normal agent try to speak

to a secret agent, the second must refuse the communication (with a fixed

rejection message).

4. At the end, the boss agent requests a protocol switch to the two secret agents

downgrading them to be normal agents.

5. The protocol restarts at the point 1.
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Unlike the ICNP protocol example4, this is a cyclic protocol5, indeed, it never

ends. Now we can introduce the corresponding trace expression.

We can represent the agents normal behaviour with the NormalAgent trace ex-

pression.

Communication =

(tell_me(var(1), var(2))):

(((say_to(var(2), var(1))):Communication) \/

((shut_up(var(2), var(1))):Communication)),

Communications =

finite_composition(|,

finite_composition(\/,

Communication,

[m(var(2), [remove(var(1))])]), [m(var(1), [])]),

Switch1 = ((switch(var(3), var(4))):lambda),

Switch2 = ((switch(var(4), var(3))):lambda),

NormalAgent = ((Communication|Switch1)|Switch2).

Where:

• var(1) is a list containing all normal agents;

• var(2) is a list containing all normal agents;

• var(3) is a chosen agent which will be promoted to be secret;

• var(4) is a chosen agent which will be promoted to be secret.

In the first line we can describe how an agent communicates with another agent; af-

ter, a composition is done using the specific operator. The iteration is done on the

two parameters var(1) and var(2); in particular, the two finite composition

operators are nested, the outermost iterates on var(1), while the innermost it-

erates on var(2) except (thanks to the remove keyword) the current value of

var(1)6.

When an agent becomes a secret agent, it switches to a different protocol.

4Even the ICNP could be represented as a cyclic protocol.
5Usually, all protocols defined with our formalism are cyclic.
6It is necessary, in this case, because a communication like (tell me(agent1, agent1)):...

is useless.
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SecretSpeak1 = (tell_me(var(1), var(2))):

(((say_to(var(2), var(1))):SecretSpeak1) \/

((shut_up(var(2), var(1))):SecretSpeak1)),

SecretSpeak2 = (tell_me(var(2), var(1))):

(((say_to(var(1), var(2))):SecretSpeak2) \/

((shut_up(var(1), var(2))):SecretSpeak2)),

These two trace expressions represent the communication between the two secret

agents. We can note that, as already said before, a secret agent can speak only to

another secret agent.

The parameters var(1) and var(2) represent the two secret agents.

NoSpeakAgent1 = (tell_me(var(3), var(1))):

((shut_up(var(1), var(3))):NoSpeakAgent1),

NoSpeakAgents1 = finite_composition(|,

NoSpeakAgent1, [m(var(3), [])]),

NoSpeakAgent2 = (tell_me(var(3), var(2))):

((shut_up(var(2), var(3))):NoSpeakAgent2),

NoSpeakAgents2 = finite_composition(|,

NoSpeakAgent2, [m(var(3), [])]),

If a secret agent receives a tell me message from a normal agent, it answers with

a shut up message. Also here we take advantage of the finite composition

operator in order to avoid replications of the same trace expression for each agent.

SwitchBack = ((switch_back(var(1), var(2))):lambda),

SecretAgent = (SecretSpeak1 |

(SecretSpeak2 |

(NoSpeakAgents1 |

(NoSpeakAgents2 |

SwitchBack)))).

As already said at the beginning of this section, our protocol is cyclic; consequently,

each secret agent can receive a protocol switch request, in this way a secret agent

returns to be a normal agent which follows the NormalAgent behaviour.

The last trace expression represents the boss agent behaviour.
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Boss = ((switch(var(2), var(1))):

((switch(var(1), var(2))):

((switch_back(var(2),var(1))):

((switch_back(var(1), var(2))):Boss)))).

This agent is very simple because it must only require protocol switches to the

two secret agents.
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Implementation

In this chapter we present all the technical and design aspects of our framework.

The chapter is divided into three parts: the first introduces all requirements which

must be satisfied by an agent in order to become a self-adaptive protocol-driven

agent, the second presents a high level version of the interpreter and all functions

that must be implemented by a self-adaptive protocol-driven agents to be able to

reason about the protocol (which way to go inside the possible choices, how to

react to a particular state of the protocol like a message reception, etc...), the last

part, instead, is the most technical one, with all the details of the Prolog code

implementing the next, project and generate functions, and the implementations

of our framework in Jason and JADE tools.

6.1 Requirements

A self-adaptive protocol-driven agent Ag is characterized by the following compo-

nents:

• A unique agent identifier.

• A knowledge base KBase supporting the operations ?K (is knowledge formalized

as K available in KBase, and which actual value is associated with it?), +K (add

knowledge formalized as K to KBase) and −K (remove knowledge formalized as

K from KBase). We assume that the knowledge base includes information on

97
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1. the precedence policy stating which kind of communicative action (sending,

prec(send), or receiving, prec(rec)) the agent should give the precedence to, in

case the protocol’s state allows interactions of both kinds. Like any other piece

of knowledge in the knowledge base, this information may change during time.

However, some protocols1 work only when the agents involved in them follow

consistent precedence policies, and changing the policy at runtime may lead to

deadlocks or unwanted behaviours;

2. the timeout timeout(T) stating for how long the agent can wait for being able

to either sending or receiving a message; the agent’s alarm is set to T any time a

communicative action takes place and expires after T time units;

3. the list of agents which, in Ag’s opinion, have the power to impose a proto-

col switch (empowered(AgList)). This list can change at runtime, for example

because the trust of Ag towards some agents changes.

• A representation Env of the environment supporting external actions that the

agent performs on the environment via effectors, and sensing actions performed

by the agent via sensors. As customary, we make no assumptions on how sensors

and effectors are implemented and we leave out from our investigation how the

environment representation is kept consistent with the actual environment’s state.

• A symbolic representation for all events which occur inside the framework. As

already anticipated in the events paragraph in Section 3.2.5, in the case of com-

municative events the translation from a message to its symbolic representation

can be very easy but, if we consider a generic event, the translation could be more

difficult.

• The currently executing protocol Pr, whose syntax has been introduced in Sec-

tion 4.2.

• A message queue MsgQueue storing interactions Intr corresponding to incoming

messages that still have to be processed. The syntax of Intr is given in Section

3.2.5. Switch protocol requests have highest priority and always reach the top

of the queue, when pushed into it. These messages are the only ones which are

1For example the protocol where Alice sends an arbitrary number of “ping” to Bob who
answers with the same number of “pong”, and then the protocol starts again, requires a syn-
chronization between Alice and Bob in such a way that Bob avoids answering as soon as it
receives a “ping” message, because Alice might want to send more “ping”s: Alice should give
the precedence to sending and Bob to receiving.
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not tagged as “unexpected” when received in a protocol’s state where they were

not expected. In this case, they are locally stored2 and managed as soon as the

protocol reaches a state where a switch protocol request can be accepted.

6.2 Design

6.2.1 Policies

As already anticipated in Section 3.2.5 and at the beginning of this chapter, even

if a self-adaptive protocol-driven agent is totally guided by the protocol, it must

be able to:

• react to a message reception;

• reason on the possible choices when the protocol provides more than one

path;

• clean the knowledge base after a switch request;

• manage an unexpected message.

The agent must be equipped with: • A received message reaction policy, stating

how to update the knowledge base and the environment’s representation as a

consequence of the reception of one incoming message among the allowed ones

(as returned by the generate function). The policy implementation may require

to perform internal or sensing actions and, as a side effect, may affect the agent’s

knowledge base and the environment. No communicative actions can be performed

as part of the policy.

react: Intr × KBase × Env → KBase × Env

• An outgoing message selection policy, stating which outgoing interaction (if any)

among the allowed ones the agent will perform. The selection policy depends on

the knowledge base and on the environment’s representation and affects both of

them. Like for the reaction policy, its implementation may rely on internal and

2We assume that agents cannot have more than one pending protocol switch request at a
time. Although the assumption is strong, it allows us to keep the interpreter implementation
simple. It can be relaxed using a queue of pending requests instead of a variable.
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sensing actions but not on communicative ones. The selection policy returns null

in case either there are messages allowed by the protocol but none of them can be

sent for reasons wired into the agent’s selection function, or there are no messages

at all.

select: P(Intr × Pr) × KBase × Env → ((Intr × Pr)
⋃
{null}) × KBase × Env

• A cleanup policy stating what actions the agent should perform before switching

to another protocol.

cleanup: KBase × Env → KBase × Env

• An unexpected message management policy stating what to do when a normal

message not foreseen by the protocol is received, or when a switch message is sent

by an agent who has not the power to act as a controller. The policy may vary

according to the protocol currently under execution.

unexpected: Intr × KBase × Env → KBase × Env

The operational semantics of protocol-driven agents is given by the following in-

terpreter which can call the generate and project functions.

For clarity of the presentation, we leave the knowledge base and environment

components out of the arguments and return values of react, select, cleanup, unex-

pected. All these functions take the current knowledge base and environment and

can update them.

6.2.2 The interpreter

In this section we present a high level version of our interpreter leaving all imple-

mentation aspects in Section 6.3.

Let KBase0, Env0, Pr0, MsgQueue0 be the initial knowledge base, environment,

global protocol and message queue of Ag, respectively. A SwitchMsg variable is

used to store the pending protocol switch request. An alarm (the Al variable) is

initially associated with the Timeout value set by the agent’s designer. A mecha-

nism for checking whether the Al expired should be available.

Following Prolog’s syntax, we use the “ ” symbol to identify variables whose value

does not matter.
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Initialization

KB = KBase0;

En = Env0;

Pr = project(Pr0, {Ag});

MQ = MsgQueue0;

SwitchMsg = null;

?timeout(T);

Al = set(T);

Interpreter

while true {

/* C1: If a switch protocol request has been received, it is assigned to SwitchMsg and

removed from the message queue */

if (top(MQ) == msg(S, Ag, switch, PrSwitch))

SwitchMsg = pop(MQ);

/* The couples (interaction, next prot. state) allowed in the current state of the protocol

are generated. For sake of presentation, we divide them into those involving incoming

messages (InMsgs) and those involving messages that can be sent (OutMsgs) */

InMsgs
⋃

OutMsgs = generate(Pr);

/* C2: If the reception of a switch protocol request is allowed in the current state of the

protocol, and there is such a request, it is managed: SwitchMsg is reset */

if (SwitchMsg == msg(S, Ag, switch, PrSwitch) ∧

(msg(S, Ag, switch, PrSwitch), ) ∈ InMsgs)

{ SwitchMsg = null;

/* C2.1 If the sender has the power to request a protocol switch, then the cleanup

actions are performed according to the “cleanup” policy, the protocol is changed to the

projection of PrSwitch onto Ag, and the current interpreter cycle is exited, otherwise

the protocol switch request is managed by the “unexpected” policy */

if (?empowered(AgList) ∧ S ∈ AgList)

/* Protocol switch */

{ cleanup(); Pr = project(PrSwitch, {Ag}); }

else unexpected(msg(S, Ag, switch, PrSwitch));

continue;

}

/* Note that, if condition C2 is not met, namely either there is no switch request or the
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protocol does not allow to manage it, nothing is done. If there is a switch request, it

remains associated with variable SwitchMsg for being managed later, when the protocol

will allow it */

/* C3: If the message queue is empty, the alarm has expired, and there are no messages

to send, the agent is stuck: the interpreter exits its main loop */

if (empty(MQ) ∧ expired(Al) ∧ select(OutMsgs) == null;)

break;

/* C4: If the message queue is empty, the alarm has not expired, and the agent gives

the precedence to reception, the current interpreter cycle is exited in the hope that, at

the next one, some message will be available in the message queue; there is no risk to

always remain in this condition as the alarm sooner or later will expire */

if (empty(MQ) ∧ ¬expired(Al) ∧ ?prec(rec))

continue;

/* C5: If the message queue is not empty and the top message is not among those

expected by the protocol (condition (top(MQ), ) /∈ InMsgs which includes the case InMsgs

== ∅), the message is unexpected. It is popped and managed according to the agent’s

“unexpected” policy */

if (¬empty(MQ) ∧ (top(MQ), ) /∈ InMsgs)

{ Msg = pop(MQ); unexpected(Msg); continue; }

/* C6: If the message queue is not empty, the top message is among the expected ones

(this condition is superfluous but allows us to name the Prn component for successive

use) and either the agent gives the precedence to reception and the current state of the

protocol allows to receive messages, or the agent gives the precedence to sending but there

are no messages to send, the first message in the queue is popped, the knowledge base

and environment are updated according to the “react” policy, the protocol moves to the

new state Prn and the alarm is reset */

if (¬empty(MQ) ∧ (top(MQ),Prn) ∈ InMsgs ∧

(?prec(rec) ∨ (?prec(send) ∧ select(OutMsgs) == null))

{ Msg = pop(MQ); react(Msg); Pr = Prn;

?timeout(T); Al = set(T); continue; }

/* C7: The interpreter reaches this point if either the agent gives the precedence to

sending, or it cannot wait for receiving messages because the message queue is empty
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and the timeout expired: the outgoing message selection is performed according to the

“select” policy; the result of the selection cannot be null otherwise C3 would have been

verified; the selected message is sent; the protocol moves to the next state; the alarm is

reset */

(Msg,Prn) = select(OutMsgs); send(Msg);

Pr = Prn; ?timeout(T); Al = set(T); }

6.2.2.1 Extending the interpreter to cope with template trace expres-

sions

In the protocol switch cases (C1 and C2 statements of the interpreter), if we

want to manage template trace expressions instead of trace expressions, some

changes are necessary some changes due to the fact that all protocols can contain

parameters which have to be instantiated (we highlight these changes in bold).

/* C1’: If a switch protocol request has been received, it is assigned to SwitchMsg and

removed from the message queue */

if (top(MQ) == msg(S, Ag, switch, (PrSwitch, Parameters)))

SwitchMsg = pop(MQ);

/* The couples (interaction, next prot. state) allowed in the current state of the protocol

are generated. For sake of presentation, we divide them into those involving incoming

messages (InMsgs) and those involving messages that can be sent (OutMsgs) */

InMsgs
⋃

OutMsgs = generate(Pr);

/* C2’: If the reception of a switch protocol request is allowed in the current state of the

protocol, and there is such a request, it is managed: SwitchMsg is reset */

if (SwitchMsg == msg(S, Ag, switch, (PrSwitch, Parameters)) ∧
(msg(S, Ag, switch, PrSwitch), ) ∈ InMsgs)

{ SwitchMsg = null;

/* C2.1’ If the sender has the power to request a protocol switch, then the cleanup

actions are performed according to the “cleanup” policy, the protocol is instantiated

obtaining PrSwitchInstantiated, the instantiated protocol is changed to the projection of

PrSwitchInstantiated onto Ag, and the current interpreter cycle is exited, otherwise the

protocol switch request is managed by the “unexpected” policy */

if (?empowered(AgList) ∧ S ∈ AgList)

/* Protocol switch */

{
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cleanup();

instantiate template(PrSwitch, Parameters, PrSwitchInstantiated);

Pr = project(PrSwitchInstantiated, {Ag});
}
else unexpected(msg(S, Ag, switch, (PrSwitch, Parameters)));

continue;

}

All the other cases of the interpreter remain unchanged.

Even if this change may seem to have limited effects, it allows us to give a huge support

for dynamic protocol generation. Indeed, the Parameters variable can take on different

values at runtime, on the base of the agent’s knowledge base.

In order to better explain the dynamic protocol generation importance, we can consider

a typical case, where the agents which participate to the protocol can change at runtime.

Without template trace expressions, we could not formalize the protocol in a way that

it supports adding and removing agents at runtime.

For example, the protocol

Agent1 =

say_hello(agent1, agent2):lambda |

say_hello(agent1, agent3):lambda,

Agent2 =

say_hello(agent2, agent1):lambda |

say_hello(agent2, agent3):lambda,

Agent3 =

say_hello(agent3, agent1):lambda |

say_hello(agent3, agent2):lambda,

Pr = Agent1|(Agent2|Agent3).

is extremely simple but, if a new agent agent4 joins the protocol at runtime, there is

no way to dynamically adapt it in such a way that agent1, agent2, and agent3 can

communicate with it. Instead, using template trace expressions

AgentI =

finite_composition(

|,

say_hello(var(1), var(2)):lambda,
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[m(var(2), [remove(var(1))])]

),

Pr = finite_composition(|, (AgentI|(reset(var(1)):lambda)), [m(var(1), [])]).

we can represent the protocol in a more compact way and, above all, we can instantiate

the protocol at runtime during the protocol switch phase: it is enough that agent4

requires a protocol switch (in this case, the protocol switch has as interaction type

the reset type3) to all other agents passing as Parameters the set {agent1, agent2,

agent3, agent4}.

6.3 Implementation

6.3.1 Prolog

In this section we introduce all Prolog predicates which implement the building blocks

of our framework. All the features offered by the various components of the framework

are written using the Prolog language:

• the preprocessing function, which instantiates the template trace expressions, is

implemented by the apply predicate;

• the projection function, which given a global protocol returns a local version for

each protocol-driven agent, is implemented by the project predicate;

• the next transition function, which allows moving from a state of the protocol to

another, is implemented by the next predicate;

• the generate function, which returns all possible messages that are allowed in

the current state of the protocol, is implemented by the inMsgs and outMsgs

predicates (thus separating the messages which can be received from those which

can be sent).

6.3.1.1 The event types

From an implementation point of view, an event type is defined by means of the

has type/2 predicate whose first argument is the event, and the second argument is

the type. For example,

3However, for the purpose of this example, it is not necessary to go into details.
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collect parcel(agent2, parcel3,

parcelweight(4, kg))

∈ collect parcel.

is implemented by means of the Prolog fact

has_type(

collect_parcel(agent2, parcel3,

parcelweight(4, kg)),

collect_parcel).

More in general, if we want to state that any collect parcel/3 event has collect parcel

type, no matter which are its three arguments, we will use anonymous logical variables

instead of the three ground arguments:

has_type(collect_parcel(_, _, _), collect_parcel).

In the rest of the chapter, we will use frequently the event types (EventType) and

interaction types (IntType) terminologies interchangeably. This follows from the fact

that we are considering only communicative event types, as already highlighted many

times in this work.

6.3.1.2 The empty function

The auxiliary function ε( ), which was presented in Chapter 4 and it was defined by the

rules in Figure 4.2, implemented by the empty/1 Prolog predicate, specifies the trace

expressions whose interpretation contains the empty sequence.

empty(lambda) :- !.

empty(T1\/T2) :- (empty(T1), !; empty(T2)).

empty(T1|T2) :- !, empty(T1), empty(T2).

empty(T1*T2) :- !, empty(T1), empty(T2).

empty(T1/\T2) :- !, empty(T1), empty(T2).

empty(_>>T) :- !, empty(T).

The ! is a Prolog goal which always succeeds, but cannot be backtracked past; it is best

used to prevent unwanted backtracking. Intuitively, a trace expression τ s.t. ε(τ) holds

specifies a protocol that is allowed to successfully terminate.
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6.3.1.3 The next transition function

The next predicate implements the homonym function defining the semantics of trace

expressions.

Basic cases.

Prefix. If the trace expression is a sequence (: operator) consisting of the event type ET

followed by the trace expression T (first argument), and the actual event perceived in

the environment is E (second argument), and E has type ET, then ET:T can move to

T (third argument).

next(ET:T,E,T) :- has_type(E,ET).

Concatenation. If T1 can move to T3 upon observing the event E, then the concatena-

tion T1*T2 can move to the concatenation T3*T2 upon observing the event E ; if T1

contains ε, that is, empty(T1) holds (second rule), then T1*T2 can move to T3 if T2

can move to T3.

next(T1*T2,E,T3*T2) :-

next(T1,E,T3).

next(T1*T2,E,T3) :-

!,empty(T1), next(T2,E,T3).

Intersection. If T1 can move to T3 upon observing the event E and T2 can move to

T4 upon observing the same event E, then the intersection (∧ operator) between T1

and T2 can move to the intersection between T3 and T4, T3∧T4.

next(T1/\T2,E,T3/\T4) :-

next(T1,E,T3), next(T2,E,T4).

Union. If T1 can move to T2 upon observing the event E, then the union (∨ operator)

between T1 and any other trace expression, T1∨ , can move to T2 upon observing the

event E (and the converse for the second rule).

next(T1\/_,E,T2) :- next(T1,E,T2).

next(_\/T1,E,T2) :- !, next(T1,E,T2).
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Shuffle. If T1 can move to T3 upon observing the event E, then the shuffle (| operator)

between T1 and T2, T1 |T2, can move to T3 |T2 upon observing the event E (and the

converse for the second rule).

next(T1|T2,E,T3|T2) :- next(T1,E,T3).

next(T1|T2,E,T1|T3) :- next(T2,E,T3).

Filter. If the observed event E has type ET and T1 can move to T2 upon observing

the event E, then the filter (� operator) can move to T2 filtered with the same event

type ET ; otherwise, the filter can move to itself.

next(ET>>T1,E,ET>>T2) :-

event(E),

(has_type(E,ET) *-> next(T1,E,T2); T2=T1).

Where Cond -> T ; F represents implication, T is executed only if the Cond is true,

otherwise (;) F is executed. The *-> operator has the same behaviour with in addition

the possibility of backtracking in the left side.

6.3.1.4 The generate function

As will be known in Sections 6.3.2.2 and 6.3.3.2, during the interpreter execution, after

that an agent calls the next predicate (upon receiving or sending a message), it saves

the new state obtained by the next predicate as the new current state (using the

agent’s name as the key). This is possible thanks to the recorda predicate, which saves,

given a key, the predicate passed as argument; this predicate can be recovered using the

recorded predicate, using the same key (in this case the agent’s name).

The generate function, as we have already seen in Section 6.2.2, is implemented by two

different predicates:

the inMsgs predicate,

inMsgs(MyName, ListToReceive) :-

recorded(MyName, current_state(LastState), _),

findall(msg(Sender, MyName, Performative, Content, NewState),

next(LastState, msg(Sender, MyName, Performative, Content),

NewState), ListToReceive).
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which, given the name of a protocol-driven agent, returns a list containing all messages

allowed in the current state of the protocol, where the agent is the receiver;

the outMsgs predicate,

outMsgs(MyName, ListToSend) :-

recorded(MyName, current_state(LastState), _),

findall(msg(MyName, Receiver, Performative, Content),

next(LastState, msg(MyName, Receiver, Performative, Content),

NewState), ListToSend).

which, given the name of a protocol-driven agent, returns a list containing all messages

allowed in the current state of the protocol, where the agent is the sender.

In both predicates the search of all possible messages, which are consistent with the

current state of the protocol, is done using the findall predicate.

The findall(Object,Goal,List) produces a list List of all the objects Object that

satisfy the goal Goal. Often Object is a variable, in which case the query can be read

as: Give me a list containing all the instantiations of Object which satisfy Goal.

6.3.1.5 The project function

The projection algorithm has been designed and implemented by Ancona et al. in [4] for

the constrained global types formalism; this algorithm has been adapted in this thesis

for the trace expressions formalism.

The projection algorithm implementation w.r.t the empty and next algorithm imple-

mentation must deal with the problem of cyclic terms, indeed, one of the reasons for

the choice of SWI Prolog is that it manages infinite terms in an efficient way. Since we

need to record the association between any type and its projection in order to correctly

detect and manage cycles, we exploited the SWI Prolog library assoc for association

lists, http://www.swi-prolog.org/pldoc/man?section=assoc. The three predicates

of the library assoc that we use for our implementation are

• empty assoc(-Assoc): Assoc is unified with an empty association list.

• get assoc(+Key, +Assoc, ?Value): Value is the value associated with Key in the

association list Assoc.

http://www.swi-prolog.org/pldoc/man?section=assoc
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• put assoc(+Key, +Assoc, +Value, ?NewAssoc): NewAssoc is an association list

identical to Assoc except that Key is associated with Value. This can be used to

insert and change associations.

The projection is implemented by a predicate project(T, ProjAgs, ProjT) where T

is the trace expression to be projected, ProjT is the result, and ProjAgs is the set

of agents onto which the projection is performed. The algorithm exploits the predicate

involves(IntType, ProjAgs) succeeding if IntType may involve one agent, as a sender

or a receiver, in ProjAgs.

Currently involves looks for actual interactions ActInt whose type is IntType and as-

sumes that senders and receivers in ActInt are ground terms, but it could be extended

to take agents’ roles into account or in other more complex ways. It uses the “or” Prolog

operator ; and the member predicate offered by the library lists. It exploits the pred-

icate has type(ActInt, IntType) implementing the definition of the type IntType of

an actual interaction ActInt.

involves(IntType, List) :-

has type(msg(Sender, Receiver, , ), IntType),

(member(Sender, List);member(Receiver, List)).

For the implementation of project/3 we use an auxiliary predicate project/6 with the

following three additional arguments:

• an initially empty association A to keep track of cycles;

• the current depth of the trace expression under projection, initially set to 0;

• the depth of the deepest sequence operator belonging to the projected type, ini-

tially set to -1.

project(T, ProjAgs, ProjT) :-

empty assoc(A), project(A, 0, -1, T, ProjAgs, ProjT).

The predicate is defined by cases.

1. lambda is projected into lambda.
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project( Assoc, Depth, DeepestSeq, lambda, ProjAgs, lambda):- !.

2. If Type has been already met while projecting the trace expression (get assoc(Ty-

pe, Assoc, (AssocProjType,LoopDepth)) succeeds), then its projection ProjT

is AssocProjType if LoopDepth =< DeepestSeq and is lambda otherwise. The

“if-then-else” construct is implemented in Prolog as Condition -> ThenBranch

; ElseBranch.

project(Assoc, Depth, DeepestSeq, Type, ProjAgs, ProjT) :-

get assoc(Type,Assoc,(AssocProjType,LoopDepth)),!,

(LoopDepth =< DeepestSeq -> ProjT=AssocProjType; ProjT=lambda).

3. T = (IntType : T1). ProjT is recorded in the association A along with the cur-

rent depth Depth (put assoc((IntType:T1),Assoc,(ProjT,Depth),NewAssoc)).

If IntType involves ProjAgs, ProjT=(IntType:ProjT1) where ProjT1 is obtained

by projecting T1 onto ProjAgs, with association NewAssoc, depth of the type un-

der projection increased by one, and depth of the deepest sequence operator equal

to Depth. If IntType does not involve ProjAgs, then the projection on T is the

same as T1 with association NewAssoc, depth of the type under projection equal

to Depth, and depth of the deepest sequence operator equal to DeepestSeq.

project(Assoc, Depth, DeepestSeq, (IntType:T1), ProjAgs, ProjT) :- !,

put assoc((IntType:T1),Assoc,(ProjT,Depth),NewAssoc),

(involves(IntType, ProjAgs) ->

IncDepth is Depth+1,

project(NewAssoc,IncDepth,Depth,T1,ProjAgs,ProjT1),

ProjT=(IntType:ProjT1);

project(NewAssoc,Depth,DeepestSeq,T1,ProjAgs,ProjT)).

4. T = (IntType >> T1). ProjT is recorded in the association A along with the cur-

rent depth Depth (put assoc((IntType>>T1),Assoc,(ProjT,Depth),NewAssoc)).

Considering that the filter operator concerns all events which belong to IntType

and also those that do not belong to IntType, ProjT=(IntType>>ProjT1) where

ProjT1 is obtained by projecting T1 onto ProjAgs, with association NewAssoc,

depth of the type under projection increased by one, and depth of the deepest

sequence operator equal to Depth.

project(Assoc, Depth, DeepestSeq, (IntType>>T1), ProjAgs, ProjT) :- !,
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put assoc((IntType>>T1),Assoc,(ProjT,Depth),NewAssoc),

IncDepth is Depth+1,

project(NewAssoc,IncDepth,Depth,T1,ProjAgs,ProjT1),

ProjT=(IntType:ProjT1).

5. T = T1 op T2, where op ∈ {\/, |, *, /\}: the association between T1 op T2 and

the projected type ProjT is recorded in the association Assoc along with the cur-

rent depth Depth, T1 and T2 are projected into ProjT1 and ProjT2 respectively,

with association equal to NewAssoc, depth of the type under projection increased

by one and depth of the deepest sequence operator equal to DeepestSeq. The

result of the projection is ProjT=(ProjT1 op ProjT2). For example, if op is *,

the Prolog clause is:

project(Assoc, Depth, DeepestSeq, (T1*T2), ProjAgs, ProjT) :- !,

put assoc((T1*T2),Assoc,(ProjT,Depth),NewAssoc),

IncDepth is Depth+1,

project(NewAssoc, IncDepth, DeepestSeq, T1, ProjAgs, ProjT1),

project(NewAssoc, IncDepth, DeepestSeq, T2, ProjAgs, ProjT2),

ProjT=(ProjT1*ProjT2).

6.3.1.6 The apply function

As already anticipated in Section 4.5, we need a function (to be used before of the

projection phase) which instantiates the protocol removing all parameters and returning

a “ground”4 trace expression.

The apply function is similar to the project function, it must manage the problem of

cyclic terms. The apply function is implemented by a predicate apply(T, Params,

InsT) where T is the template trace expression to be instantiated, Params are the values

to be assigned to the parameters inside the template trace expression, and InsT is the

result, that is the instantiated trace expression. This trace expression is exactly the one

that will be passed as argument to the project function.

For the implementation of apply/3 we use an auxiliary predicate apply/7 with the

following three additional arguments (the fourth arguments is a copy of parameters

4A trace expression is ground when it has not parameters inside it, that is when it is fully
instantiated.
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used as backup of global parameters in order to manage nested finite composition

operators):

• an initially empty association A to keep track of cycles;

• the current depth of the trace expression under instantiation, initially set to 0;

• the depth of the deepest sequence operator belonging to the instantiated type,

initially set to -1.

apply(T, Params, InsT) :-

empty assoc(A), apply(A, 0, -1, T, InsT, Params, Params).

The predicate is defined by cases.

1. lambda is instantiated in lambda.

apply( , , , lambda, lambda, CurPar, GlobalPar):- !.

2. If Type has been already met while instantiating the trace expression (get assoc(Ty-

pe, Assoc, (AssocInsType,LoopDepth)) succeeds), then its instantiation InsT

is AssocInsType if LoopDepth =< DeepestSeq and is lambda otherwise.

apply(Assoc, Depth, DeepestSeq, Type, InsT, CurPar, GlobalPar) :-

get assoc(Type,Assoc,(AssocInsType,LoopDepth)),!,

(LoopDepth =< DeepestSeq -> InsT=AssocInsType; InsT=lambda).

3. T = (IntType op T1), where op ∈ {:, >>}. InsT is recorded in the association

A along with the current depth Depth (put assoc((IntType:T1),Assoc,(InsT,

Depth),NewAssoc)). If IntType contains parameters (var(i)), these are substi-

tuted by the apply inside predicate with the current correct values obtaining

IntType1. InsT = (IntType1:InsT1) where InsT1 is obtained by instantiating

T1, with association NewAssoc, depth of the type under instantiation increased by

one, and depth of the deepest sequence operator equal to Depth.

apply(Assoc, Depth, DeepestSeq, (IntType:T1), InsT, CurPar, GlobalPar) :-

!, put assoc((IntType:T1),Assoc,(InsT,Depth),NewAssoc),

IncDepth is Depth+1,
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apply inside(IntType, IntType1, CurPar),

apply(NewAssoc,IncDepth,Depth,T1,InsT1,CurPar,GlobalPar),

InsT=(IntType1:InsT1).

/* if the term is a parameter */

apply inside(T, InsT, CurPar) :-

functor(T, var, ), !, /* the term’s functor is var */

arg(1, T, N), /* get the identification number of the parameter */

/* get the current value associated with this parameter */

member(t(var(N), Value), CurPar),

InsT = Value. /* replace the parameter with the value recovered */

/* if the term is not a parameter but it could contain some parameters */

apply inside(T, InsT, CurPar) :-

functor(T, F, A), A > 0, !, /* it is a compound term */

/* propagate the search of parameters within subterms */

findall(

InsTerm,

(arg( , T, Term), apply inside(Term, InsTerm, CurPar)),

InsTerms),

/* rebuild the term with the same functor and arity (each argument is a

free variable) */

functor(InsT, F, A),

/* unify each free variable inside the new term with the corresponding

subterm instantiated */

create term(InsT, InsTerms, 1).

/* the term is an atom (a term with arity 0, consequently there is nothing

to replace) */

apply inside(T, T, CurPar).

/* given a compound term with arity N and a list of length N, unify each argument

of the term with the corresponding element of the list */

create term( , [], ).

create term(Term, [H|T], N) :-

arg(N, Term, H),

N1 is N+1,

create term(Term, T, N1).
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The functor predicate allows us to extract the functor from the term passed

as first argument; whereas the arg predicate allows us to select/unify a single

argument in a term. These two predicates are used to manipulate terms, in this

case, the apply inside predicate executes them in order to extract information

from the IntType interaction event type. It is necessary to find and replace all

var(N) terms (thus identifying the functor var, using the functor predicate, and

the argument N, using the arg predicate) with the current value selected inside

the current lap of the finite composition operator.

4. T = T1 op T2, where op ∈ {\/, |, *, /\}: the association between T1 op T2 and

the instantiated type InsT is recorded in the association Assoc along with the

current depth Depth, T1 and T2 are instantiated in InsT1 and InsT2 respectively,

with association equal to NewAssoc, depth of the type under instantiation in-

creased by one and depth of the deepest sequence operator equal to DeepestSeq.

The result of the instantiation is InsT=(InsT1 op InsT2). For example, if op is

*, the Prolog clause is:

apply(Assoc, Depth, DeepestSeq, (T1*T2), InsT, CurPar, GlobalPar) :-

!, put assoc((T1*T2),Assoc,(InsT,Depth),NewAssoc),

IncDepth is Depth+1,

apply(NewAssoc, IncDepth, DeepestSeq, T1, InsT1, CurPar, GlobalPar),

apply(NewAssoc, IncDepth, DeepestSeq, T2, InsT2, CurPar, GlobalPar),

InsT=(InsT1*InsT2).

5. T = finite composition(Op, T1, Vars), where Op ∈ {\/, |, *, /\}, T1 is the

trace expression to be replicated and Vars is the set of parameters on which iterates

the operator. InsT is obtained by calling an auxiliary predicate finite composition/9

which instantiates T1 as many times as the number of values of the first parameter

multiplied by the number of values of the second and so on5.

apply(Assoc, Depth, DeepestSeq, finite composition(Op, T1, Vars), InsT,

CurPar, GlobalPar) :- !,

finite composition(Op, T1, CurParameters, InsT, Assoc, Depth,

5If we have the set of parameters {var(1), var(2), var(3)} where var(1) iterates on {v1,
v2, v3}, var(2) iterates on {v1, v3} and var(3) iterates on {v2, v4, v5}; the trace expres-
sion finite composition(|, T, [m(var(1),[]), m(var(2),[]), m(var(3),[])]), when in-
stantiated by the apply predicate, becomes a new trace expression composed by a shuf-
fle operator with n branches, where n = num of par(var(1)) * num of par(var(2)) *

num of par(var(3)) = 3 * 2 * 3 = 18.
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DeepestSeq, GlobalPar, Vars).

The finite composition predicate is defined as follow.

finite composition(Op, T, CurPar, InsT, Assoc, Depth, DeepestSeq,

GlobalPar, Vars) :-

select subset vars(GlobalPar, Vars, CurPar, SubSetGlobalPar, NewVars),

findall(

IT,

(select one assoc(SubSetGlobalPar, SinglePathPar, NewVars),

apply(Assoc, Depth, DeepestSeq, T, IT, SinglePathPar, GlobalPar)),

InsTs),

add operator(Op, InsTs, InsT).

It selects the subset of parameters which appears inside the set of modifiers Vars;

subsequently, it instantiates the trace expression for each parameter and for each

possible value which can take the parameter.

In order to select only the subset of variables currently used in the finite composition

operator, we use the select subset vars predicate,

/* if there is no parameters to select */

select subset vars([], V, , [], V).

/* if the parameter is present in the current set of modifiers on which the

finite composition operator iterates, thus the predicate must only continue

the selection of the other parameters */

select subset vars([t(Var,Values)|OtherPar], Vars, CurPar,

[t(Var, Values)|T], NewVars) :-

/* the modifier belongs to the set of parameters */

member(m(Var, ), Vars), !,

/* continue the selection of the other parameters */

select subset vars(OtherPar, Vars, CurPar, T, NewVars).

/* if the parameter is not present in the current set of modifiers but the

corresponding parameter has a fixed value */

select subset vars([t(Var,Values1)|OtherPar], Vars, CurPar,

[t(Var, Values)|T], NewVars) :-

/* select the correct current value for the parameter */

(member(t(Var, Values2), CurPar), not(is list(Values2)),
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Values = Values2); (not(member(t(Var, ), CurPar)),

not(is list(Values1)), Values = Values1),

/* continue the selection of the other parameters */

!, select subset vars(OtherPar, Vars, CurPar, T, NewVars1),

/* set the finite coposition modifiers with the corresponding values */

set all modifiers(Var, Values, NewVars1, NewVars).

/* the parameter is discarded because is not used in the finite composition

operator */

select subset vars([ |OtherPar], Vars, CurPar, T, NewVars) :-

select subset vars(OtherPar, Vars, CurPar, T, NewVars).

which selects the subset of parameters on which the finite composition predi-

cate must iterate.

The set all modifiers predicate is necessary to replace into each modifier all pa-

rameters with the current values associated. For example, if in the current state of

the instantiation phase the parameters var(1), var(2), var(3) take the values v1,

v2, v3 respectively, the set all modifiers predicate applied to m(add(var(1))),

m(remove(var(2))) and m(add(var(3))) modifiers returns m(add(v1)), m(remove(v2))

and m(add(v3)).

/* there is no modifiers to set */

set all modifiers( , , [], []).

/* replace into each modifier all parameters with the current values associated

*/

set all modifiers(Variable, Value, [m(Variable1,Modifiers)|Variables],

[m(Variable1,Modifiers1)|T]) :-

/* replace inside the single modifier */

set modifiers(Variable, Value, Modifiers, Modifiers1),

/* continue the replacement */

set all modifiers(Variable, Value, Variables, T).

/* the modifier does not contain parameters to set */

set modifiers( , , [], []).

/* add(Variable) -> add(Value) */

set modifiers(Variable, Value, [add(Variable)|Modifiers],

[add(Value)|T]) :-
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!, set modifiers(Variable, Value, Modifiers, T).

/* remove(Variable) -> remove(Value) */

set modifiers(Variable, Value, [remove(Variable)|Modifiers],

[remove(Value)|T]) :-

!, set modifiers(Variable, Value, Modifiers, T).

/* add(Variable) modifier remains unchanged */

set modifiers(Variable, Value, [add(Variable1)|Modifiers],

[add(Variable1)|T]) :-

set modifiers(Variable, Value, Modifiers, T).

/* remove(Variable) modifier remains unchanged */

set modifiers(Variable, Value, [remove(Variable1)|Modifiers],

[remove(Variable1)|T]) :-

set modifiers(Variable, Value, Modifiers, T).

In this way, we obtain a subset of the variables containing only those which belong

to our trace expression and, for each modifier, we have the corresponding current

value.

Each iteration (findall predicate in finite composition predicate) requires

that each parameter is set to a value; so, we can instantiate all different branches

of the finite composition operator. The predicate which solves this problem is

the select one assoc predicate.

/* there is no parameter to set with a value */

select one assoc([], [], ).

/* if the parameter has multiple possible values (it is a parameter on which

the finite composition operator iterates) select one of them (considering all

the modifiers) */

select one assoc([t(var(N), Values)|OtherParameters],

[t(var(N), H)|T], Variables) :-

is list(Values),

((member(m(var(N), Modifiers), Variables)) ->

((member(H, Values); member(add(H), Modifiers)),

not(member(remove(H), Modifiers))); true),

/* if the parameter has only one possible value, select it */

select one assoc(OtherParameters, T, Variables).

select one assoc([t(var(N), Value)|OtherParameters],
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[t(var(N), Value)|T], Variables) :-

not(is list(Value)),

select one assoc(OtherParameters, T, Variables).

Finally, the finite composition predicate must call the add operator predicate.

It must only compose all branches previously created during the findall phase,

with the chosen operator Op (that is specified as argument of finite composition

operator).

add operator( , [], lambda).

add operator( , [InsT|[]], InsT) :- !.

add operator(Op, [InsT|T], InsTWithOp) :-

add operator(Op, T, InsTWithOp1),

add operator aux(Op, InsT, InsTWithOp1, InsTWithOp).

The add operator aux is the predicate which composes two trace expressions:

add operator aux(Op, T1, T2, Res) returns Res unified with T1 Op T2.

6.3.2 Jason

Jason, as anticipated in Section 1.2, is an interpreter for an extended version of the

AgentSpeak language.

The first attempt to implement our framework has been using Jason because it supports

natively the Prolog language; in this way, there is no integration problem6 between

the agent interpreter implementation and the Prolog predicates (that have just been

presented in the previous section).

6.3.2.1 Integration with the framework

As already highlighted in Section 6.3.1, the most important features of our framework,

such that the protocol representation, the protocol instantiation and the protocol pro-

jection are implemented using the Prolog language. When we implement our framework

using a chosen MAS tool, we must only implement the interpreter using the language

provided by the tool, everything else, as just said, is implemented instead in Prolog.

6Mainly for this reason we decided to present it first.
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Figure 6.1: The implementation of our framework in Jason.

In general, an integration is needed between the two languages, that is the communica-

tion between the protocol-driven agent’s interpreter and Prolog; however, in the case of

Jason, this integration is not necessary because it supports Prolog code inside it. In fact,

as already explained in Section 1.2, Jason allows us to write rules that correspond to

Prolog predicates, in this way, we can copy the next, apply, project, etc... predicates

in Jason, thus calling them directly from the interpreter.

Consequently, the protocol-driven agent’s interpreter is the only one which must be

implemented using Jason language (plans, goals, annotations and so on), considering

that it represents the body of the protocol-driven agent.

Below we present the customization for the Jason tool.

6.3.2.2 The protocol-driven agent’s interpreter customization

First of all, each Jason protocol-driven agent must achieve the !execute goal7. This

goal takes one argument, that is the name of the protocol (in this case pr1) which the

agent wants to follow.

7The goals have been already introduced in Section 1.2.
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/* Initial beliefs */

myId(0). /* agent’s id */

prec(send). /* priority to send (prec(rec) priority to receive)*/

timeOut(10). /* it is expressed in seconds */

/* list of all agents which have the power to require

a protocol switch to the other agents */

empowered([switcherAgent]).

/* Initial goals */

!start.

/* Plans */

+!start : true <- !execute(trace_expression(pr1)).

The four beliefs8 derive directly from the first four requirements expressed in Section

6.1.

Each agent starts with only one goal to achieve: the !start goal. The !start goal is

achieved by the +!start plan which tries to achieve the !execute goal.

The +!execute plan instantiates the protocol, projects the protocol and, after that, runs

the interpreter.

+!execute(trace_expression(Name), ActualParameters):

.my_name(MyName) & /* get the agent’s name */

trace_expr(Name, T) & /* recover the trace expression (protocol) */

apply(T, ActualParameters, InsT) & /* instantiate the protocol */

project(InsT, [MyName], ProjT) & /* project the protocol */

<-

!move_to_state(ProjT); /* save the current state of the protocol */

!startInterpreter(trace_expression(Name)). /* run the interpreter */

The interpreter uses some predicates in order to manage the message queue and the

protocol switch requests.

/* FIFO queue of messages received by the agent */

messageQueue([]). /* initially empty */

/* predicate which adds a message as last element of the message queue */

push([], Msg, [Msg]).

8The values reported for the four beliefs are for example, indeed, they depend on the specific
agent and the specific MAS context.
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push([H|T], Msg, Msgs) :-

push(T, Msg, Msgs1) & Msgs = [H|Msgs1].

/* predicate which removes the message at the top of the message queue */

pop([H|T], H, T).

/* predicate which gets the message at the top of the message queue */

top([H|T], H).

/* at the beginning there is no protocol switch requests */

switchMsg(null).

/* when an agent receives a message, this plan adds the

message as the last of the message queue */

+!kqml_received(Sender, Performative, Content, _MsgId) :

messageQueue(Msgs) & /* Get Message Queue */

.print("Receive: (", Sender, ",", Performative, ",", Content, ")") &

/* push the message received into the message queue */

push(Msgs, msg(Sender, MyName, Performative, Content), Msgs1)

<-

-messageQueue(_); +messageQueue(Msgs1). /* update the message queue */

The interpreter implementation in Jason follows the high level design introduced in

Section 6.2.2; consequently, it implements the self-adaptive protocol-driven agent’s in-

terpreter, case by case. In particular, in Jason, each case is managed by a single plan,

as shown in Appendix B.

As an example, we show only the plan which manages a protocol switch message recep-

tion.

/* if a protocol switch is required and it is consistent with

the protocol */

+!executeInterpreter :

/* in a previous run a protocol switch was required */

switchMsg(msg(S, MyName, Performative, switch(PrSwitch, Parameters))) &

current_state(LastState) &

next(LastState, msg(S, MyName, Performative,

switch(PrSwitch, Parameters)), NewState)

<- /* Agent can manage protocol switch now */

.print("SwitchMsg: ", msg(S, MyName, Performative,

switch(PrSwitch, Parameters)));
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/* Remove protocol switch request from the agent’s knowledge base */

-switchMsg(_); +switchMsg(null);

/* If the agent needs of some operations before it can switch to the

new protocol (each agent must have its implementation) */

!cleanUp; /* In Jason it is implemented as a goal */

/* Start the new protocol */

!execute(trace_expression(PrSwitch), Parameters).

Considering that (see Section 1.2), the plans are defined as:

+!triggering_event : context <- body.

we comment on each part of the plan shown above:

• the triggering event is the executeInterpreter, that is the specific event for

which the plan is to be used; in this way, if an event, which was generated by

the addition of a !executeInterpreter goal, took place matching the triggering

event, the plan starts its execution.

• the context, which is used for checking the current situation so as to determine

whether the plan is likely to succeed in handling the event (e.g. achieving a goal),

is divided so:

1. it is checked if in a previous run a protocol switch was required, this is done

using the switchMsg belief, which is set when a protocol switch message is

received (this is managed by another plan of the interpreter, see Appendix

B);

2. it is checked if the protocol switch is consistent with the current state of the

protocol, this is done using the next predicate which implements the next

transition function (considering that we are in Jason, we can use directly the

next predicate).

• the body, which is a sequence of formula determining a course of action, is divided

so:

1. it is printed a message informing that is occurring a protocol switch;

2. it is updated the switchMsg belief (it is removed the old belief -switchMsg

and it is added the new belief +switchMsg);

3. it is added the goal !cleanUp, which is the implementation of the homonym

policy;
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4. it is called the !execute goal, which is the main goal that we have already

presented before in the section, in this way, it will start the new protocol

passed as argument in the protocol switch message.

Policies implementation. Each agent, which executes the interpreter, must im-

plement all the policies described in Section 6.2.1. In this way, the agent can:

• react to a message reception, for example:

+!react(Msg) :

true

<-

/* save the number of messages received */

-count_messages_received(C);

+count_messages_received(C+1).

• select a message to send, for example:

/* there is no message to send */

select([], _, cannot_send, cannot_send, _NewState).

/* choose the first message to send */

select(

[msg(MyName, Receiver, Performative, Content, NewState)|_],

X, can_send, msg(MyName, Receiver, Performative, Content), NewState).

• manage an unexpected message, for example:

+!unexpected(Msg):

true

<-

/* save the error in order to manage it after */

+error(Msg).

• clean the knowledge base after a protocol switch request, for example:

+!cleanUp :

true

<-

/* update the current state */

-current_state(_);

+current_state(initial).



Chapter 6. Implementation 125

6.3.2.3 Experiments with Jason

In this section we report some experiments of our work in order to show some examples

of results which we can obtain executing our protocol-driven agents inside Jason. All

screen shots, which we have reported, show the agent’s gui in Jason.

The experiments that we have chosen to report are those related to the examples pre-

sented in Chapter 5; in this way, we can focus directly on the main important aspects

of the protocols, considering that we have already presented all logical details.

Iterated Contract Net Protocol. In Figure 6.2, we have reported the body of

the initiator agent. As already said in Section 6.3.2.2, it consists in the call of the

main goal !start which calls in turn the !execute goal passing as argument the name

of the protocol and all parameters necessary for the instantiation phase.

The implementation of the participant agent (see Figure 6.3) is very similar.

Figure 6.2: ICNP - initiator agent in Jason.

After the protocol has been instantiated, it starts the communication among all agents

Figure 6.3: ICNP - participant agent in Jason.
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inside the system; in particular, in Figure 6.4 we can observe the information exchange

between initiator and participant2, where participant2 proposes the value 10 and

initiator proposes against the value 9.

At a certain point of the protocol, in Figure 6.5, participant2 proposes the value 6

Figure 6.4: ICNP - Proposal and counterproposal.

and initiator accepts sending the accept proposal message.

The winner agent, in this case participant2 (Figure 6.6), sends to initiator the

Figure 6.5: ICNP - Acceptance and rejection of the proposal.

inform message (as expected from the protocol) thus ending correctly the protocol.

Auction Protocol. From the point of view of the trace expression structure,

the Auction protocol is very interesting, in fact, it is the only example which uses the

intersection operator.

The output reported in Figure 6.7 shows agent1 which sends the inform start and

the cfp 1 messages to agent2 and agent3. Consequently, agent2 and agent3 send a

proposal to agent1. After, agent1, accepts agent2 and rejects agent3 (in this particular

case). All these phases are synchronized, in fact, each phase can start only when the
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Figure 6.6: ICNP - Inform message from the winner agent.

Figure 6.7: Auction Protocol - Inform start and call for proposal.

previous one is completed. This is obtained by the presence of the intersection operator,

as we have seen in Chapter 5.

Figure 6.8: Auction Protocol - Proposal with acceptance of one participant
and rejection of the others.
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Secret Protocol. The secret protocol is characterized by two types of agents, the

normal (which can become secret) agent, reported in Figure 6.9, and the boss agent,

reported in Figure 6.10. Initially all agents can communicate among them without

Figure 6.9: Secret Protocol - Agent.

Figure 6.10: Secret Protocol - Boss.

limitations; we can observe this in Figure 6.11 where agent1 receives a tell me message

from agent2 answering with a say to message (no problems with the communication

because there are no confidential data). At a certain point of the protocol, an agent can

become a secret agent as we can see in Figures 6.12 and 6.13; agent3 receives the protocol

switch message from boss becoming a secret agent. In particular, in Figure 6.12 agent3

manages the protocol switch and starts the preprocessing phase instantiating the new

protocol. After that, in Figure 6.13, agent3 continues projecting the new protocol; in

this way, it obtains the local version customized for it. When a normal agent becomes a

secret agent could have some confidential information, consequently, it must not release

these information to normal agents but only to the other secret agents. In Figure 6.14,

in fact, agent1, which has received a tell me message from the normal agent2, answers

with a rejection message (the shut up message in this case). At a certain point of the
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Figure 6.11: Secret Protocol - Communication between normal agents.

Figure 6.12: Secret Protocol - Preprocessing phase - Switch to exceptional
behaviour (the agent3 become a secret agent).

Figure 6.13: Secret Protocol - Projection phase - Switch to exceptional be-
haviour (agent3 become a secret agent).

protocol, reported in Figure 6.15, a secret agent ceases to be secret and it becomes a

normal agent again (it is obtained as a result of a protocol switch).
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Figure 6.14: Secret Protocol - A secret agent can not release confidential
information to normal agents.

Figure 6.15: Secret Protocol - A secret agent which becomes a normal agent.

6.3.3 JADE

JADE, as already anticipated in Section 1.3, is a Java framework to develop MASs,

where each agent is an object instance of a class which must extend a common Java

class (Agent class). In order to create a protocol-driven agent, we have created a class

called AgentProtocolDriven, which will be extended by the classes that define our

protocol-driven agents.

The AgentProtocolDriven class defines the protocol-driven agent’s interpreter; conse-

quently, each protocol-driven agent class, which extends it, inherits the setup method

and the cyclic behaviour representing the real interpreter implementation; that is struc-

tured following the design level presented in Section 6.2.2, splitting all cases on the base

of what the agent can or can not to do in the current state of the protocol.

Before analyzing in more detail the interpreter implementation in Java, we explain how

the integration between Java and Prolog was solved.
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6.3.3.1 Integration with the framework

To know the actions allowed by the protocol at a given time (namely, which messages

the agent can send, which one it is allowed to receive), the agent queries the Prolog

library where all the important pieces of information, like the current state of protocol,

are maintained; to do this, in JADE, we decided to use a Java library called JPL9, that

makes communication between a Java program and the SWI Prolog engine possible. So,

the JADE agent’s interpreter can, step by step, ask to Prolog what the agent can or

cannot do.

Figure 6.16: The implementation of our framework in JADE.

JPL is a set of Java classes and C functions providing an interface between Java

and Prolog. JPL uses the Java Native Interface (JNI) to connect to a Prolog engine

through the Prolog Foreign Language Interface (FLI), which is more or less in the process

of being standardized in various implementations of Prolog. JPL is not a pure Java

implementation of Prolog; it makes extensive use of native implementations of Prolog

on supported platforms. The current version of JPL only works with SWI-Prolog.

Currently, JPL only supports the embedding of a Prolog engine within the Java VM.

Future versions may support the embedding of a Java VM within Prolog, so that, for

example, one could take advantage of the rich class structure of the Java environment

from within Prolog.

JPL is designed in two layers, a low-level interface to the Prolog FLI and a high-level

Java interface for the Java programmer who is not concerned with the details of the

Prolog FLI. The low-level interface is provided for C programmers who may wish to

port their C implementations which use the FLI to Java with minimal fuss.

9http://www.swi-prolog.org/packages/jpl/

http://www.swi-prolog.org/packages/jpl/
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The initialization of the Prolog engine is carried out with a static block inside the

AgentProtocolDriven class. The static method init of the JPL class allows this.

/∗ static block which initializes the Prolog engine ∗/
static{

JPL.init(); /∗ Prolog engine initialization ∗/
/∗ load the library that contains all implemented protocols ∗/
createAndCheck("consult", new Atom("prolog/protocollibrary.pl"));

System.out.println("protocollibrary loaded.");

/∗ load the library contains all predicates used

to instantiate, project, etc... ∗/
createAndCheck("consult",

new Atom("prolog/protocolenforcementtools.pl"));

System.out.println("protocolenforcementtools loaded.");

}

The createAndCheck method is also a static method of the AgentProtocolDriven class.

In particular, there are three versions of this method (overloading).

/∗ method used to execute a predicate represented as a String ∗/
protected static Query createAndCheck(String predicate){

Query query = new Query(predicate);

if(!query.hasSolution()){
throw new PrologException(predicate + " predicate failed");

}
return query;

}

/∗ method used to execute a predicate represented as a functor(term)

∗/
protected static Query createAndCheck(String functor, Term term){

Query query = new Query(functor, term);

if(!query.hasSolution()){
throw new PrologException(functor + " " + term + " predicate

failed");

}
return query;

}

/∗ method used to execute a predicate represented as

functor(term1, ..., termN) where terms = { term1, ..., termN } ∗/
protected static Query createAndCheck(String functor, Term[] terms){

Query query = new Query(functor, terms);

if(!query.hasSolution()){
throw new PrologException(functor + " predicate failed");
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}
return query;

}

These methods are necessary to execute all queries in Prolog engine. They create an

object of type Query (Query is a class of JPL library) and, after that, they call the

method hasSolution which executes in Prolog the predicate passed as argument.

6.3.3.2 The interpreter customization

Each new agent class must extend the AgentProtocolDriven class and eventually if

necessary overriding the following methods:

• setup, method dedicated to initialize the Prolog engine with all predicates neces-

sary to the agent (it is the first method called by JADE on each agent);

• react, method dedicated to the agent reaction after a message reception that is

expected by the protocol;

• unexpected, method dedicated to the agent reaction after a message reception

that is unexpected by protocol;

• select, method used by the agent in order to select which message to send between

those expected by the protocol;

• cleanup, method used by the agent to perform all actions necessary before switch-

ing to another protocol.

The react, unexpected, select and cleanup methods consist in the policies imple-

mentation in JADE (we will present an example of methods implementation at the end

of this section).

Each agent’s setup method must recall the inherited method of its parent

(AgentProtocolDriven class) in which the main behaviour implementing the inter-

preter’s body is created and added. This is a Cyclic Behavior which is executed any

time the agent is selected by the JADE schedule. It is like a loop, and in each round

the agent can check if can do something coherently with the protocol.

The parent’s setup method does not only create a behaviour but it cares about instan-

tiation and projection of the protocol by calling the execute method which runs the

Prolog predicate: instantiate and project10.

10It is the very similar to the execute plan in Jason.
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Figure 6.17: AgentProtocolDriven class hierarchy

/∗ method used by the agent in order to instantiate the protocol

chosen during the setup phase (see <agentType>.conf) ∗/
private void execute(String protocolName, String protocolParameters){

/∗ assert the initial state of the protocol ∗/
createAndCheck("clean and record(" + getLocalName() + ",

current state(initial))");

/∗ instantiate and project the protocol ∗/
createAndCheck(

"instantiate template and project(" +

protocolName + "," +

protocolParameters + "," +

getLocalName() + "," +

"[" + getLocalName() + "])"

);

resetTimer();

}

Below we show the Prolog code corresponding to this predicate. It can be easily seen

that the code can be broken down into three basic components (as already seen in Figure

6.16):

• the protocol representation;

• the protocol instantiation;

• the protocol projection.

/* Predicate that manages the instantiation and
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the projection of a template trace expression */

instantiate_and_project (Name, ActualParameters,

MyName, ProjectedAgents) :-

/* get the template trace expression from the library,

this protocol can have parameter variables */

trace_expr(Name, T),

/* preprocessing phase where all the syntactic sugar

and parameter variables are removed */

apply(T, CurPar, InsT),

/* project protocol on this agent */

project(MyName, InsT, ProjectedAgents, ProjT),

/* update current state of protocol */

clean_and_record(MyName, current_state(ProjT)).

After this sequence of instructions, inside the Prolog engine the projected protocol of

our agent is correctly instantiated and the interpreter can follow it.

The setup method of the AgentProtocolDriven class ends creating and adding the

main behaviour implementing the interpreter’s body.

The code of the interpreter implementation in JADE is reported in Appendix A. Below

we report only the case which manages a protocol switch message reception.

/∗ setup method that is the first called by JADE when

the agent is created ∗/
@Override

protected void setup() {
...

/∗ add the main behaviour that is the interpreter implementation ∗/
this.addBehaviour(new CyclicBehaviour() {

@Override

public void action() {
/∗ if a switch is required and consistent with the protocol ∗/
if(switchMsg != null){

/∗ check if it is allowed a switch in the current protocol

state ∗/
Query query = new Query("is time for switch(" + getLocalName

() + "," + switchMsg.getContent() + ", PrSwitch,

Parameters)");

Hashtable h; /∗ get the predicate result ∗/
if((h = query.oneSolution()) != null){
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switchMsg = null;

/∗ extrapolate all protocol data ∗/
String protocolName = fromTermToString((Term) h.get("

PrSwitch"));

String protocolParameters = fromTermToString((Term) h.get("

Parameters"));

System.out.println("\n[" + getLocalName() + "]: SwitchMsg("

+ protocolName + ", " + protocolParameters + ")");

/∗ method which implements the cleanup policy ∗/
cleanUp();

/∗ instantiate and project the new protocol ∗/
execute(protocolName, protocolParameters);

return; /∗ continue to the next run ∗/
}

}
...

}
});

}

In order to make the interpreter implementation in JADE easier, we had to create some

Prolog predicates which allow the Java code to query Prolog in a more compact way.

/* if Msg is allowed in the current state of the protocol,

move to new state and save it */

move_to_next(MyName, Msg) :-

/* get the current state of the protocol */

recorded(MyName, current_state(LastState), Ref),

/* try to do a step, if it is valid in the current state */

next(LastState, Msg, NewState),

erase(Ref),

/* update current state of protocol */

recorda(MyName, current_state(NewState)).

/* the predicate that checks if is time for a protocol switch

(depend on the current state of the protocol) */

is_time_for_switch(MyName, switch(PrSwitch, Parameters),

PrSwitch, Parameters) :-

/* get the current state of the protocol */

recorded(MyName, current_state(LastState), _),

next(LastState, msg(_, MyName, _, switch(PrSwitch, Parameters)), _).
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The move to next predicate allows the JADE interpreter to change the current state of

the protocol (next predicate) saving the results as the new protocol state; instead, the

is time for switch predicate checks if a protocol switch is allowed in the current state

of the protocol.

The necessity of these “super predicates” will be discussed in Section 6.3.4.1 where it

will be highlighted the JADE implementation problems.

Policies implementation. As already said in Section 6.3.3.2, the policies in JADE

are implemented as methods of the AgentProtocolDriven class. These methods will be

overridden by all classes which extendsit.

The default implementation in AgentProtocolDriven class is:

/∗ the default method that manages an unexpected received message ∗/
protected void unexpected(ACLMessage msg){

/∗ it prints only a message informing that the message received is

unexpected by the protocol in the current state ∗/
System.out.println("\n[" + getLocalName() + "]: Message unexpected

managed!");

}

/∗ the default method that manages the agent reaction after the

reception of a message ∗/
protected void react(ACLMessage msg){

/∗ it prints only a message informing that the message received is

correct and consistent with the current state of the protocol ∗/
System.out.println("\n[" + getLocalName() + "]: React, move to new

state and reset the timer!");

}

/∗ the default method that manages the choice of a message to send (

default method choose first message of the list) ∗/
protected Compound select(Compound listToSend){

/∗ check if the term passed as argument is or not a Prolog list ∗/
if(listToSend == null | | (!listToSend.name().equals(".") && !

listToSend.name().equals("[]"))){
throw new IllegalArgumentException("listToSend must be a list");

}
/∗ if the list is empty, return null (which means that there is no

message to send in the current state of the protocol) ∗/
if(listToSend.arity() == 0) return null;

/∗ return the first message of the list (the simplest possible

implementation, indeed this is the default behaviour) ∗/
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return (Compound) listToSend.arg(1);

}

/∗ the default method that performs all actions necessary before

switching to another protocol ∗/
protected void cleanup(){ } /∗ default, there is nothing to do ∗/

A class representing a new protocol-driven agent must extend the AgentProtocolDriven

class overriding these methods.

6.3.3.3 Experiments with JADE

In this section we present some experiments of our work in such a way that we can show

the results which have obtained executing our protocol-driven agents inside JADE. All

the experiments show the agent’s gui in JADE, in this case, the terminal.

The experiments reported below are those related to the examples presented in Chapter 5

(like for Jason implementation); in this way, we can focus directly on the main important

aspects of the protocols, considering that we have already presented all logical details.

Iterated Contract Net Protocol. In Figure 6.18 we can see that, as expected by

the ICNP protocol, the initiator agent sends the cfp message to all other agents in the

system (in this case the participants agent2 and agent3). After that, a participant

Figure 6.18: ICNP - Call for proposal.
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agent can send a message containing a proposal to initiator (see Figure 6.19); the

latter can answer with an against proposal until the value proposed is low enough (in

this case the maximum value that can be accepted by the initiator is 6). When the

Figure 6.19: ICNP - Proposal and counter proposal.

value proposed is less than or equal to 6, initiator accepts the participant who has

proposed it (see Figure 6.20) thus ending the protocol.

Figure 6.20: ICNP - Acceptance and rejection of the proposal.
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Auction Protocol. The Auction protocol, as in the case of the Jason implementa-

tion, is not really interesting from the point of view of the observable results. As we can

see in Figure 6.21, agent1 sends the inform start and the cfp 1 messages to agent2

and agent3.

After an exchange of proposals, coherently with the protocol, agent1 accepts the pro-

Figure 6.21: Auction Protocol - Inform start and call for proposal.

posal of agent3 rejecting that of agent2. Subsequently, agent1 can either end the

Figure 6.22: Auction Protocol - Proposal with acceptance of one participant
and rejection of the others.
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protocol with the chosen winner, or it can restart the protocol with a cfp 2 message

and, after that, the agents will resend their proposals and so on.

Figure 6.23: Auction Protocol - the cfp 2 message and the restart of the
protocol.

Secret Protocol. Initially, see Figure 6.24, all agents are normal and there are no

secret agents. The communication happens only among normal agents; consequently,

each tell me message is followed by an answer message say to (there are no confidential

data). In Figure 6.25, agent1 changes the protocol after a protocol switch request sent

by boss, becoming a secret agent. If a normal agent sends a tell me message to agent1,

it can not answer positively and it rejects the communication with the rejection message

shut up. In Figure 6.26, we can see that agent1 sends a shut up message to agent2,

which is a normal agent that can not have any confidential information. At a certain

point of the protocol, reported in Figure 6.27, after the reception of a protocol switch

request from the boss agent, agent1 becomes a normal agent.
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Figure 6.24: Secret Protocol - Communication between normal agents.

Figure 6.25: Secret Protocol - agent1 becomes a secret agent.
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Figure 6.26: Secret Protocol - A secret agent can not release confidential
information to normal agents.

Figure 6.27: Secret Protocol - A secret agent which becomes a normal agent.
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6.3.4 Comparison between Jason and JADE implementa-

tion

Both implementations did not require a huge amount of work, considering that both

use the same Prolog predicates; in this way, the workload is totally focused on only

the interpreter implementation. As already said, the implementation in Jason has been

simpler, above all considering the absence of the need for the integration between the

two languages (Prolog code inside).

From the point of view of the interpreter customization, the two implementations are

very similar because both follow the same case by case approach, which has been de-

scribed at design level in Section 6.2.2.

As already mentioned in Section 3.2.5, our framework does not depend on a particular

MAS architecture, we can observe that Jason is a tool which allows creating only MASs

with a BDI architecture (see Section 1.2), while, JADE is a tool which allows creating

MASs that are not related to a special architecture. The only requirements which must

be satisfied are those presented in Section 6.1.

6.3.4.1 Problems encountered only with JADE

The interpreter implementation in JADE was more complicated than in Jason, we found

many more different problems.

The main problems can be summarized in two specific cases:

• the JPL library does not support cyclic terms;

• SWI Prolog assert predicate does not allow a cyclic term as argument.

It is easy to note that the second problem results from a lack of SWI Prolog in the

management of cyclic terms.

In order to solve the first problem, we had to create “super predicates”, which are

collections of predicates, to ensure that all intermediate executions are made within

Prolog and no cyclic term is returned to JADE. We have already presented one of these

predicates in Section 6.3.3: the move to next predicate; this predicate is necessary

because the JADE interpreter (Java method) can not call directly the next predicate

(which instead it is possible in Jason) because the (possible) cyclic term returned is not

representable in JPL. In this way, this “super predicates” can call the next predicate
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saving the result as the new current state of the protocol directly, without the need to

return the term to JPL.

The second problem was solved instead using another predicate inside SWI Prolog;

the record predicate supports cyclic terms and has a behaviour similar to the assert

predicate.
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Conclusions and Future work

In this thesis we have presented the constrained global type formalism and its extension;

namely the trace expression formalism; we have introduced all the basic aspects of this

new formalism and, above all, we have compared it with LTL when it is used for runtime

verification. The results obtained and discussed in Section 4.4 led us to determine that

our formalism is more powerful and suitable to be used for runtime verification respect

to LTL (trace expressions were created for this purpose).

Our work does not give only a theoretical contribution, it has a strong impact also at

the implementation level; we have described our implementation in the Jason and JADE

tools in Sections 6.3.2 and 6.3.3 respectively, reporting our experiments using protocols

studied in Chapter 5. Our results reflect those predicted by the theory, in fact, we have

created correctly all the MASs corresponding to the protocols reported in the thesis1.

The most relevant aspect of our approach is that it allows the developer of the MAS

to create MASs in a compact and easy way, obtaining as a result a MAS that not only

works but that is correct by construction having all the agents which are guided by the

same protocol. The originality and significance of this work have been witnessed by

many publications where the approach has been discussed:

• D. Ancona, D. Briola, A. Ferrando and V. Mascardi. Global Protocols as First

Class Entities for Self-Adaptive Agents. In Proceedings of the 2015 International

Conference on Autonomous Agents and Multiagent Systems, AAMAS 2015, pages

1019-1029, 2015.

1Not all the protocols that we have implemented have been reported.

146



Chapter 5. Future work 147

• A. Ferrando. Protocol-driven agents and their integration in JADE. In Proceed-

ings of the thirtieth Convegno Italiano di Logica Computazionale, CILC 2015,

2015.

• D. Ancona, D. Briola, A. Ferrando and V. Mascardi. Protocols with Exceptions,

Timeouts, and Handlers: A Uniform Framework for Monitoring Fail-Uncontrolled

and Ambient Intelligence Systems, WOA 2015 special issue, to appear.

In the remainder of this section we discuss some possible extensions of our work towards

different directions. For each task we state which targets could be easily achieved (“easy

to achieve”), and which are more challenging to achieve (“difficult to achieve”).

Section 7.1 presents a theoretical evolution, which consists in studying the expressive-

ness of trace expressions and in extending the formalism with attributes along the lines

of attribute grammars and attribute global types [71]. In Section 7.2 we analyze how

to check properties of trace expressions in a static way, thus moving from the original

purpose of trace expressions (runtime verification) to a new application domain (static

verification and model checking). Section 7.3 presents a more practical research direc-

tion, that consists in extending the architecture of our framework for protocol-driven

self-adaptive agents in a cooperative way inspired by [10]. Section 7.4 outlines a way to

check the suitability of our approach by implementing it on top of MASs frameworks

different from JADE and Jason, based on different MAS models.

7.1 Trace expressions++

Trace expressions can be used both to verify at runtime that the system behaves as

expected, as discussed in [8], and to drive the system’s behaviour, as discussed in the

thesis. In this section we present some research directions related with extensions of

trace expressions.

7.1.1 Attribute trace expressions

In [71] attribute global types, namely an extension of constrained global types with

attributes, were introduced with the purpose of representing more expressive protocols

to be used for runtime verification (not for protocol-driven behaviour). Global types

equipped with attributes are more expressive, since they allow parametric specifications

of protocols, but despite their expressive power they can be still effectively used for

dynamic checking of protocols.
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Porting the ideas described in [71] into the trace expression formalism, thus obtaining

attribute trace expressions, would join the benefits of trace expressions with those

of attributes.

constrained global types

tt ��

uu

attribute global types

?
��

template global types

��
attribute trace expressions oo

? // trace expressions

While we suppose that these attribute trace expressions could still be suitable for runtime

verification, we are not sure that they could still drive the behaviour of an agent. With

respect to a “generate and test” approach, a monitor used for runtime verification must

only be able to test, whereas a protocol driven agent must be able to test, but also to

generate. The main difference between these two approaches is thus that the first takes

a somehow “passive” point of view because the monitor “simply” monitors a flow of

information where actual messages are ground and can be used to unify the attribute

values with the actual perceived values: the monitor is not required to have generative

capabilities; in the second approach, each protocol-driven agent must also be able to

generate new events. Attributes might make the generation stage very difficult or even

not possible.

Easy to achieve:

To extend trace expressions using attributes. From the theoretical point of view, to an-

alyze all advantages and disadvantages caused by extending the syntax and semantics.

From the practical point of view, to implement this extension in different working pro-

totypes, such that in Jason, in JADE and others, at least as far as runtime verification

is concerned.

Difficult to achieve:

To implement prototypes that use attribute trace expressions not only for runtime ver-

ification, but also for protocol-driven behaviour.

7.1.2 Expressiveness

In Section 4.4 we compared trace expressions with LTL in the context of runtime ver-

ification. However we did not perform a deep analysis of the expressive power of trace
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expressions.

We presented many examples in order to compare trace expressions with LTL and we

observed that trace expressions can represent some context-free expressions. It is not

obvious to state something about the position of the trace expression formalism in

Chomsky’s hierarchy; we suppose that it could be at least equivalent to context-free

languages given the presence of operators like concatenation, shuffle, intersection and

conditional, but we have no formal proof.

Considering trace expressions with the attribute extension, it can be expected a higher

expressive power.

Another aspect which would be important to analyze is the time complexity arising from

the use of trace expressions instead of other formalism such that context-free grammar,

LTL, Büchi automatons and so on. In the case of deterministic trace expressions we

had good empirical results but we have to better formalize and also studying the case

of non-deterministic trace expressions.

Based on these formally proved relationships:

• LTL is equivalent to star-free regular languages, and

• Büchi automatons are equivalent to ω-regular languages (consequently languages

recognized by LTL are strictly contained in those recognized by Büchi automatons)

it should be found an algorithm which allows us to move from a trace expression to

something like LTL but more expressive in order to give substance to our claim that trace

expressions are supposed to be more expressive of LTL and also of Büchi automatons.

These formalisms can be also compared in the context of static analysis, for example,

in the case of Büchi automatons we can recognize only traces with infinite length, while

using trace expressions, we can represent traces with both infinite and finite length.

Easy to achieve:

To study trace expressions expressiveness, properties (for instance closure properties)

and relations with other formalism in addition to LTL.

Difficult to achieve:

To find the exact position of trace expressions in Chomsky’s hierarchy.
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7.2 Static Verification and Model checking of MASs

In Section 4.4 we compared trace expressions with LTL in the context of runtime veri-

fication in order to demonstrate the power of our approach.

LTL is basically used in model checking, in fact in order to pass to runtime verification

we had to consider LTL3 which is a three-valued extension of LTL. In Section 4.4 we

demonstrated that it is always possible, given an LTL3 monitor, to extrapolate a trace

expression so that its monitor is equivalent.

An interesting development of our work could be to try to directly verify some prop-

erties on a trace expression. This would be extremely useful because it would allow

us to check if a protocol has some property, such that deadlock absence, determinism,

contractiveness and so on, before building a MAS which is driven by that protocol.

In some sense, this would be the converse of what we have done in [9] where we started

from LTL, which is used in static verification, moving after on trace expressions, which

are used in runtime verification.

?

��

oo //
((

LTL

��

//Model checking STATIC

trace expressions

CC

oo //
77LTL3

CC

// Runtime verification DYNAMIC

As we can see in the diagram above, we will try to retrace our steps so that, given a

trace expression, we can consequently obtain the corresponding LTL property (if there

is one, i.e there are some trace expressions that cannot be represented using LTL).

Easy to achieve:

To understand, given a trace expression, which properties we could be able to verify

(checking them accordingly).

Difficult to achieve:

To bring trace expressions in the model checking world by comparing them with LTL and

Büchi automatons. It would be extremely useful to completely verify trace expressions

and not only some predefined properties.
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7.3 Coo-PDA

Another interesting research direction could be that of Cooperative Protocol-Driven

agents (Coo-PDA). As mentioned at the beginning of the chapter, this evolution derives

from [10]; in that work the authors described a MAS architecture where all agents,

implementing a BDI architecture, can exchange plans (namely, behavioral knowledge).

The most important difference to note is that the Coo-PDA extension would not allow

agents to exchange plans but protocols; this is crucial because it allows working with

several MASs architectures and not only with BDI agents.

The idea consists in extending our work promoting an agent to super agent which knows

many protocols (expressed for instance as trace expressions). All the other agents ask

it to follow a protocol whenever is necessary.

Figure 7.1: Coo-PDA architecture.

The server side is divided into two main parts:

1. Protocol libraries part, where all the libraries used by the super agent are defined.

Each library contains a set of protocols written in some formalism, for example

trace expressions.

2. Administrator part, that is where the Super Agent, or rather the agent which is

dedicated to providing the necessary protocols to client agents, is defined.
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In Figure 7.2, we can see a short and simplified protocol exchange flow between a protocol

driven agent (client) and the super agent (server). Here we take advantage of the protocol

switching (introduced in Section 3.2.5). In some sense, the Coo-PDA approach is a direct

consequence of this; in fact, it keeps all the features presented in Section 3.2.5 unchanged

except for the architecture, where there is a super agent (special agent) and all the others

which contact him in order to obtain new protocols or change some existing one.

Easy to achieve:

To create the Coo-PDA architecture starting from our work in order to obtain a generic

and modular implementation, maintainable and easy to extend. Agents will directly

require each protocol only by “name”.

Figure 7.2: Coo-PDA flow example.

Difficult to achieve:

To extend the Coo-PDA architecture so that each agent can require a protocol passing a

set of properties which it claims to be maintained and some other information, receiving

a trace expression that meets the requirements (Figure 7.3: the client agent does not

need to know explicitly the name of a protocol but it can simply state what it expects

the protocol can do or can achieve).

7.4 Porting on other frameworks

Two working prototypes for protocol-driven agents exist, demonstrating the feasibility

of our approach (as already presented in Sections 6.3.2 and 6.3.3). While integrating
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Figure 7.3: Coo-PDA flow evolution example

our protocol-driven agents into Jason was easy because of Jason’s native support to

Prolog, integrating them into JADE was not. However, that attempt - which in the end

was successful - makes us confident that it can be possible to integrate our approach

into almost any agent framework, provided that an interface between the framework’s

language and Prolog is provided.

Easy to achieve:

To implement our work on top of at least one other MAS framework such as 2APL [45],

3APL [61], GOAL [62], Jadex [25].

Difficult to achieve:

To implement our work on top of many other MAS frameworks, thus demonstrating its

generality and portability.
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JADE interpreter implementation

/∗ setup method that is the first called by Jade when

the agent is created ∗/
@Override

protected void setup() {
...

execute(protocolName, protocolParameters);

...

/∗ add the main behaviour that is the interpreter implementation ∗/
this.addBehaviour(new CyclicBehaviour() {

@Override

public void action() {
/∗ if a switch is required and consistent with the protocol ∗/
if(switchMsg != null){

/∗ check if it is allowed a switch in the current protocol

state ∗/
Query query = new Query("is time for switch(" + getLocalName

() + "," + switchMsg.getContent() + ", PrSwitch,

Parameters)");

Hashtable h; /∗ get the predicate result ∗/
if((h = query.oneSolution()) != null){

switchMsg = null;

/∗ extrapolate all protocol data ∗/
String protocolName = fromTermToString((Term) h.get("

PrSwitch"));

String protocolParameters = fromTermToString((Term) h.get("

Parameters"));

System.out.println("\n[" + getLocalName() + "]: SwitchMsg("

+ protocolName + ", " + protocolParameters + ")");
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/∗ method which implements the cleanup policy ∗/
cleanUp();

/∗ instantiate and project the new protocol ∗/
execute(protocolName, protocolParameters);

return; /∗ continue to the next run ∗/
}

}

/∗ get the first message in the message queue (null if there

are not messages) ∗/
ACLMessage msg = receive();

/∗ if the agent gives priority to receive messages and the

message queue is empty and it does not catch up the timeout

∗/
if(precRec && msg == null && !expiredTimer()){

return; /∗ it is a foo run ∗/
}

/∗ statement which manages the error case where the agent

receives a message but the protocol does not allow it ∗/
if(msg != null && new Query("inMsgs(" + getLocalName() + ",[])"

).hasSolution()){
/∗ method which implements the unexpected policy ∗/
unexpected(msg);

return; /∗ continue to the next run ∗/
}

/∗ statement which manages the agent reception ∗/
if(msg != null && (precRec | | (!precRec && new Query("outMsgs("

+ getLocalName() + ",[])").hasSolution() && expiredTimer())

)){
System.out.println("\n[" + getLocalName() + "]: Message

selected from Message Queue: " + msg);

/∗ if the message selected is not a protocol switch request

∗/
if(!msg.getContent().contains("switch")){

/∗ if the message selected is allowed in the current state

of the protocol, move to new state and save it ∗/
Query q1 = new Query("move to next(" + getLocalName() + ",

msg(" + msg.getSender().getLocalName() + "," +

getLocalName() + "," + toKQMLPerformative(msg.

getPerformative()) + "," + msg.getContent() + "))");

if(q1.hasSolution()){
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System.out.println("\n[" + getLocalName() + "] pass to

NewState");

/∗ method which implements the react policy ∗/
react(msg);

resetTimer();

}
/∗ the message selected is unexpected by the protocol ∗/
else{

/∗ method which implements the unexpected policy ∗/
unexpected(msg);

}
return; /∗ continue to the next run ∗/

}
/∗ if the message selected is a protocol switch request ∗/
else{

boolean found = false;

for(String str : empoweredAgents){
if(msg.getSender().getLocalName().equals(str)){

found = true;

break;

}
}
/∗ if the agent that requires a protocol switch can ask for

it ∗/
if(found){

System.out.println("[" + getLocalName() + "]: Save switch

request because now I can’t manage it");

/∗ save the protocol switch message ∗/
switchMsg = msg;

}
else{ /∗ otherwise ∗/

System.out.println("[" + getLocalName() + "]: Discard

switch request because Sender can’t request it");

}
return; /∗ continue to the next run ∗/

}
}

/∗ statement that manages the message sending ∗/
Query q = new Query("outMsgs("+getLocalName()+",ListToSend)");

if(q.hasSolution()){
Compound listToSend = (Compound) q.oneSolution().get("

ListToSend");

Compound termMsg = select(listToSend);
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if(termMsg == null){
/∗ re−put the message on top of the message queue ∗/
if(msg != null) putBack(msg);

return; /∗ continue to the next run ∗/
}
/∗ the agent can send a message ∗/
System.out.println("\ntermMsg:" + fromTermToString(termMsg));

/∗ if the message selected is allowed in the current state of

the protocol move to new state and save it ∗/

q = new Query("move to next", new Term[]{ new Atom(

getLocalName()), termMsg });
Hashtable h;

if((h = q.oneSolution()) != null){
String receiver = termMsg.arg(2).toString();

ACLMessage msgToSend = new ACLMessage(toFipaPerformative(

termMsg.arg(3).toString()));

msgToSend.setSender(getAID());

msgToSend.addReceiver(new AID(receiver, AID.ISLOCALNAME));

msgToSend.setContent(fromTermToString(termMsg.arg(4)));

/∗ send the message selected ∗/
send(msgToSend);

System.out.println("["+getLocalName()+"] Send: ("+receiver+

","+fromTermToString(termMsg.arg(4))+")");

resetTimer();

}
}
/∗ re−put the message on top of the message queue ∗/
if(msg != null) putBack(msg);

}
});

}
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Jason interpreter implementation

/* the main plan that resets the agent’s timer, then initializes

the protocol and executes the interpreter */

+!startInterpreter(Pr) :

myId(Id) /* get the agent’s identifier */

<-

time.resetTimer(Id); /* reset the timer timeout */

-protocol(_); +protocol(Pr); /* save the current protocol used */

!executeInterpreter. /* run the interpreter */

/* if a protocol switch is required and it is consistent with

the protocol */

+!executeInterpreter :

/* in a previous run a protocol switch was required */

switchMsg(msg(S, MyName, Performative, switch(PrSwitch, Parameters))) &

current_state(LastState) &

next(LastState, msg(S, MyName, Performative,

switch(PrSwitch, Parameters)), NewState)

<- /* Agent can manage protocol switch now */

.print("SwitchMsg: ", msg(S, MyName, Performative,

switch(PrSwitch, Parameters)));

/* Remove protocol switch request from the agent’s knowledge base */

-switchMsg(_); +switchMsg(null);

/* If the agent needs of some operations before it can switch to the

new protocol (each agent must have its implementation) */

!cleanUp; /* In Jason it is implemented as a goal */
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/* Start the new protocol */

!execute(trace_expression(PrSwitch), Parameters).

/* if the agent gives priority to receive messages but the message queue

is empty (however it does not catch up the timeout) */

+!executeInterpreter :

myId(Id) & /* get the agent’s identifier */

messageQueue(Msgs) & .empty(Msgs) & /* The message queue is empty */

/* the agent gives priority to receive messages, this information is

maintained thanks to a belief which each agent must have */

prec(rec) &

timeOut(T) & not time.expired(T, Id)

<-

/* this run is foo but maybe in the next

the agent will receive a message */

!executeInterpreter.

/* the plan that manages an error case where the agent receives a message

but the protocol does not allow it (the priority does not matter) */

+!executeInterpreter :

messageQueue(Msgs) &

not .empty(Msgs) & /* the message queue is not empty */

inMsgs(ListToReceive) &

.empty(ListToReceive) & /* the agent can not receive a message now */

pop(Msgs, Msg, Msgs1) /* remove the message from the message queue */

<-

-messageQueue(_); +messageQueue(Msgs1); /* update the message queue */

.print("Message unexpected managed!");

/* goal which manages an unexpected message

(each agent must have its implementation) */

!unexpected(Msg); /* In Jason it is implemented as a goal */

!executeInterpreter. /* continue to run the interpreter */

/* the plan that manages the agent message reception */

+!executeInterpreter :

myId(Id) & /* get the agent’s identifier */

messageQueue(Msgs) &

not .empty(Msgs) & /* the message queue is not empty and */

(prec(rec) | /* the agent gives either priority to receive messages or */
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(

prec(send) & /* the agent gives priority to send messages and */

outMsgs(ListToSend) &

/* the protocol allows the agent to send some messages and */

.empty(ListToSend) &

timeOut(T) & time.expired(T, Id) /* the timeout is expired */

)) &

pop(Msgs, Msg, Msgs1) /* remove the message from the message queue */

<-

-messageQueue(_); +messageQueue(Msgs1); /* update the message queue */

.print("Message selected from Message Queue: ", Msg);

/* the sub goal created in order to distinguish the switch cases */

!subExecuteInterpreter(Msg);

!executeInterpreter. /* continue to run the interpreter */

+!subExecuteInterpreter(Msg) :

myId(Id) & /* get the agent’s identifier */

Msg = msg(Sender, MyName, Performative, Content) &

/* the message is not a protocol switch request */

not Content = switch(PrSwitch, _) &

current_state(LastState) &

.print("Last state: ", LastState) &

next(LastState, Msg, NewState) & /* the message matches the protocol */

.print("New state: ", NewState)

<-

/* goal which changes the agent’s knowledge base

(each agent must have its implementation) */

!react(Msg); /* In Jason it is implemented as a goal */

!move_to_state(NewState); /* save the current state of the protocol */

time.resetTimer(Id); /* reset the timer timeout */

.print("React, move to new state and reset the timer!").

+!subExecuteInterpreter(Msg) :

/* the message is a protocol switch request */

Msg = msg(Sender, MyName, Performative, switch(PrSwitch, Parameters)) &

/* the sender has the power to require a protocol switch */

empowered(AgentsEmpowered) &

.member(Sender, AgentsEmpowered)

<-
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.print("Save switch request because now I can’t manage it");

/* the agent manages protocol switch when the current protocol

will provide it */

-switchMsg(_); +switchMsg(Msg).

+!subExecuteInterpreter(Msg) :

/* Message is a switch request */

Msg = msg(Sender, MyName, Performative, switch(PrSwitch, Parameters)) &

/* but the sender has not the power to request a protocol switch */

empowered(AgentsEmpowered) &

not .member(Sender, AgentsEmpowered)

<- /* the agent does nothing, it discards simply the message */

.print("Discard switch request because Sender can’t request it").

/* if the agent executes this goal, the message into the message queue

is not expected from the protocol in the current state */

+!subExecuteInterpreter(Msg) :

true <-

/* goal which manages an unexpected message

(each agent must have its implementation) */

!unexpected(Msg). /* In Jason it is implemented as a goal */

/* the plan which manages the message sending */

+!executeInterpreter :

myId(Id) & /* get the agent’s identifier */

outMsgs(ListToSend) &

/* goal which manages the message selection */

select(ListToSend, _, can_send, msg(MyName, Receiver, Performative,

Content), NewState) & /* In Jason it is implemented as a goal */

/* check the message selected */

has_type(msg(MyName, Receiver, Performative, Content), _) &

<-

.send(Receiver, Performative, Content); /* send the message */

.print("Send: (", Receiver, ",", Performative, ",", Content, ")");

!move_to_state(NewState); /* save the current state of the protocol */

.print("NewState: ", NewState);

time.resetTimer(Id); /* reset the timer timeout */

!executeInterpreter. /* continue to run the interpreter */
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/* in this round the agent did nothing but maybe the

next round it will do something */

+!executeInterpreter :

true <- !executeInterpreter.
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